Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile Phone Use Can Improve Memory

03.07.2003


The University of Bradford has conducted a study that reveals that mobile phone use can improve the short-term memory of men - but not women.

Dr Jim Smythe and Professor Brenda Costall of the University’’s School of Life Sciences carried out an experiment on both the long and short-term memory of people that were briefly exposed to electromagnetic fields (EMF) emitted from mobile telephones.

Thirty-three male and twenty-nine female students volunteered to be randomly assigned to one of three conditions in the experiment. The students were all right-handed, aged between 18 and 53 years, of good health with normal hearing and vision.



The findings following the completed study suggest that mobile phone use may actually enhance cognitive function (memory) - but only in male subjects and only in the short-term.

Dr Smythe and Professor Costall concluded: "These findings are unique as far as we are aware. There has not been a suggestion before that mobile-phone effects may be sex dependent."

The experiment took place in two phases - the first testing the students’’ ability to learn a series of words and remember them for the short-term, and the second testing how well the students could remember the information a week later.

In the first phase each student was taken to a secluded room and had to follow a set of instructions given by a research assistant. They were then either given an inactive mobile phone, an active mobile phone or no phone at all. Those students with phones were unaware if they were active or not, and they were asked to hold it to their left ear whilst following the instructions given to them.

Each student was given three minutes to memorise as many words as possible from a set of twelve contained in the shape of a pyramid, and they then had to read aloud passages from the daily newspaper to prevent them from rehearsing the original twelve words. After twelve minutes the students were given a blank sheet of paper and another three minutes to re-draw the pyramid with the words positioned in the correct places. Mobile phone exposure for those students with phones lasted for the full 15 minutes.

The participants were tested for their ability to recall words correctly. Omissions or incorrect words were called "semantic" errors and incorrectly positioned words or blanks were called "spatial" errors.

The results collated showed differences depending on the gender of the subjects in that male students exposed to an active mobile phone made fewer spatial errors than those male students exposed to an inactive phone. The female students were largely unaffected by the experience.

Following this part of the experiment, the second phase invited the students to return to the same place a week later for another test - but without telling them that they would actually be asked to recall the same words and shape. All subjects performed equally well on this task.

Dr Smythe added: "The fact that mobile phones exposure influences brain function in any way could possibly mean that cumulative EMF exposure might well result in damage."

For further information on the research findings, please contact Dr Jim Smythe on 01274 233361 or via email at j.w.smythe@bradford.ac.uk

Emma Scales | alfa
Further information:
http://www.brad.ac.uk/admin/pr/pressreleases/2003/memory.php

More articles from Studies and Analyses:

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

nachricht Virtual treasure hunt shows brain maps time sequence of memories
06.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Stanford builds a heat shield just 10 atoms thick to protect electronic devices

19.08.2019 | Information Technology

Researchers demonstrate three-dimensional quantum hall effect for the first time

19.08.2019 | Physics and Astronomy

Catalysts for climate protection

19.08.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>