Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings Help Explain the Dynamics Between The Dominant and Non-Dominant Arm

19.03.2003


The phrase, “the right hand doesn’t know what the left hand is doing,” has its roots in a passage of the Bible (Matthew 6:3). If there is truth to this old saying, the reasons may have as much to do with the way the brain obtains information from the arms as it does from the observations of ancient scribes.



Background

Most individuals are either left- or right-handed. How the skills they have learned from the dominant arm (or hand) are transferred to the non-dominant arm have long intrigued physiologists and neurologists.


The transfer of a skill learned in one hand to the other hand has been used as evidence for the role of the brain’s hemispheres in controlling that skill. The movement of knowledge from the dominant to the nondominant arm (D ->ND) has been interpreted as confirmation of the brain’s ability to encode an experience in the dominant hemisphere with the dominant hand and to influence the performance of the nondominant hand. Many researchers believe that this process is accomplished either through connections across both hemispheres or through the same side of the brain. Other scientists believe that transfer in the opposite direction reflects a dominance of the right hemisphere (in right-handers) for some aspects of motor control, so both directions of transfer can be explained with a single model.

Little is known about the involvement of the body’s subcortical structures (such as the cerebellum, and spinal cord) in this process. While it is possible to get some indication of the role of the cerebral hemispheres through the study of subjects with a sectioned corpus callosum, this has rarely been pursued in the case of motor learning and transfer. Accordingly, a team of researchers wondered whether learning a force field with one arm generalizes to the other arm.

Previous observations have found that since learning generalizes in a muscle-like, intrinsic coordinate system for the trained arm, there was little expectation that there would be generalization to the contralateral arm. The scientists found the very surprising result that there was not only strong generalization, but also that it seemed to be with respect to an extrinsic coordinate. To investigate the neural basis of this generalization, they examined an individual who had undergone a complete section of the corpus callosum. Their results provide a significant challenge to current models of how the brain learns reaching movements.

The authors of “Learned Dynamics of Reaching Movements Generalize From Dominant to Nondominant Arm,” are Sarah E. Criscimagna-Hemminger, Opher Donchin, and Reza Shadmehr, from the Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD; and Michael S. Gazzaniga, at the Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH. Their findings appear in the January 2003 edition of the Journal of Neurophysiology.

Methodology

Quantifying inter-arm generalization allowed testing of the sensitivity of these elements to the other arm. Two possible coordinate systems were considered: (1) an intrinsic (joint) representation should generalize with mirror symmetry reflecting the joint’s symmetry and (2) an extrinsic representation, which should preserve the task’s structure in extrinsic coordinates. Both coordinate systems of generalization were compared with a naïve control group.

The researchers tested transfer in right-handed subjects both from dominant to nondominant arm (D ->ND) and vice versa (ND ->D). This led to a 2 × 3 experimental design matrix: transfer direction (D ->ND/ND ->D) by coordinate system (extrinsic, intrinsic, control). Generalization occurred only from dominant to nondominant arm and only in extrinsic coordinates. To assess the dependence of generalization on callosal inter-hemispheric communication, the researchers tested commissurotomy (brain surgery) patient JW. JW showed generalization from dominant to nondominant arm in extrinsic coordinates.

Results

This study produced three main findings.

  • First, learning to compensate for dynamics of reaching movements in right-handed individuals generalizes from dominant arm to the nondominant arm (D ->ND) but not vice versa.

  • Second, D ->ND generalization in the workspace that we tested (near the midline) is in an extrinsic, Cartesian-like coordinate system.

  • Third, generalization of this motor skill does not depend on transfer of information between the hemispheres via the corpus callosum.

Conclusions

The results suggest that when the dominant right arm is used in learning dynamics, the information could be represented in the left hemisphere with neural elements tuned to both the right arm and the left arm. In contrast, learning with the nondominant arm seems to rely on the elements in the nondominant hemisphere tuned only to movements of that arm.


Source: January 2003 edition of the Journal of Neurophysiology.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | APS
Further information:
http://www.the-aps.org/press_room/journal/pr3-17-3.htm

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>