Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Findings Help Explain the Dynamics Between The Dominant and Non-Dominant Arm

19.03.2003


The phrase, “the right hand doesn’t know what the left hand is doing,” has its roots in a passage of the Bible (Matthew 6:3). If there is truth to this old saying, the reasons may have as much to do with the way the brain obtains information from the arms as it does from the observations of ancient scribes.



Background

Most individuals are either left- or right-handed. How the skills they have learned from the dominant arm (or hand) are transferred to the non-dominant arm have long intrigued physiologists and neurologists.


The transfer of a skill learned in one hand to the other hand has been used as evidence for the role of the brain’s hemispheres in controlling that skill. The movement of knowledge from the dominant to the nondominant arm (D ->ND) has been interpreted as confirmation of the brain’s ability to encode an experience in the dominant hemisphere with the dominant hand and to influence the performance of the nondominant hand. Many researchers believe that this process is accomplished either through connections across both hemispheres or through the same side of the brain. Other scientists believe that transfer in the opposite direction reflects a dominance of the right hemisphere (in right-handers) for some aspects of motor control, so both directions of transfer can be explained with a single model.

Little is known about the involvement of the body’s subcortical structures (such as the cerebellum, and spinal cord) in this process. While it is possible to get some indication of the role of the cerebral hemispheres through the study of subjects with a sectioned corpus callosum, this has rarely been pursued in the case of motor learning and transfer. Accordingly, a team of researchers wondered whether learning a force field with one arm generalizes to the other arm.

Previous observations have found that since learning generalizes in a muscle-like, intrinsic coordinate system for the trained arm, there was little expectation that there would be generalization to the contralateral arm. The scientists found the very surprising result that there was not only strong generalization, but also that it seemed to be with respect to an extrinsic coordinate. To investigate the neural basis of this generalization, they examined an individual who had undergone a complete section of the corpus callosum. Their results provide a significant challenge to current models of how the brain learns reaching movements.

The authors of “Learned Dynamics of Reaching Movements Generalize From Dominant to Nondominant Arm,” are Sarah E. Criscimagna-Hemminger, Opher Donchin, and Reza Shadmehr, from the Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD; and Michael S. Gazzaniga, at the Center for Cognitive Neuroscience, Dartmouth College, Hanover, NH. Their findings appear in the January 2003 edition of the Journal of Neurophysiology.

Methodology

Quantifying inter-arm generalization allowed testing of the sensitivity of these elements to the other arm. Two possible coordinate systems were considered: (1) an intrinsic (joint) representation should generalize with mirror symmetry reflecting the joint’s symmetry and (2) an extrinsic representation, which should preserve the task’s structure in extrinsic coordinates. Both coordinate systems of generalization were compared with a naïve control group.

The researchers tested transfer in right-handed subjects both from dominant to nondominant arm (D ->ND) and vice versa (ND ->D). This led to a 2 × 3 experimental design matrix: transfer direction (D ->ND/ND ->D) by coordinate system (extrinsic, intrinsic, control). Generalization occurred only from dominant to nondominant arm and only in extrinsic coordinates. To assess the dependence of generalization on callosal inter-hemispheric communication, the researchers tested commissurotomy (brain surgery) patient JW. JW showed generalization from dominant to nondominant arm in extrinsic coordinates.

Results

This study produced three main findings.

  • First, learning to compensate for dynamics of reaching movements in right-handed individuals generalizes from dominant arm to the nondominant arm (D ->ND) but not vice versa.

  • Second, D ->ND generalization in the workspace that we tested (near the midline) is in an extrinsic, Cartesian-like coordinate system.

  • Third, generalization of this motor skill does not depend on transfer of information between the hemispheres via the corpus callosum.

Conclusions

The results suggest that when the dominant right arm is used in learning dynamics, the information could be represented in the left hemisphere with neural elements tuned to both the right arm and the left arm. In contrast, learning with the nondominant arm seems to rely on the elements in the nondominant hemisphere tuned only to movements of that arm.


Source: January 2003 edition of the Journal of Neurophysiology.

The American Physiological Society (APS) was founded in 1887 to foster basic and applied science, much of it relating to human health. The Bethesda, MD-based Society has more than 10,000 members and publishes 3,800 articles in its 14 peer-reviewed journals every year.

Donna Krupa | APS
Further information:
http://www.the-aps.org/press_room/journal/pr3-17-3.htm

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>