Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visual attention attuned to grabbable objects

17.03.2003


Dartmouth research group has found a new and unexpected way our attention can be grabbed – by grabbable objects. Their study, which appears in the March 17 advance online issue of Nature Neuroscience, demonstrates that objects we typically associate with grasping, such as screwdrivers, forks or pens, automatically attract our visual attention, especially if these items are on a person’s right-hand side.



In the brain, there are two primary visual pathways, one for identifying objects (perception) and one to guide your arms and legs based on what you see (action). To better understand how these two systems may interact, the Dartmouth team studied whether visual perception, specifically peripheral visual attention, influences motor systems in the brain.

"People have studied peripheral vision and how it helps perception, but nobody really talked about it in terms of helping action," says Todd C. Handy, the lead author and a research assistant professor at the Center for Cognitive Neuroscience at Dartmouth. "There are certain things that we all know attract our attention, like flashing lights and loud noises. Yet, think about how often we grab things without directly looking at them. Now here’s evidence that, to help us do this, grabbable objects can literally grab our attention. There’s a clear association."


The researchers devised a simple test to measure this connection. They asked their subjects to look at a computer screen with two objects: one was something graspable, like a tool, the other was not graspable, like a cloud or a sailboat. After about a second, a set of horizontal bars flashed over one of the pictures. While concentrating in the center of the screen, the subjects were told to indicate whether the bars appeared on the left or right. The researchers determined where attention was focused when the bars flashed by measuring the electrical activity in the brain with an electroencephalogram (EEG).

"When the bars flashed over a graspable object, the EEG response in the visual cortex was more intense," says Handy. "It shows evidence of attention being specifically drawn to those objects. Interestingly, the effect was more profound when the tool was on the right. It suggests that attention is more strongly drawn to grabbable objects when they are on our right."

Handy’s team then used fMRI (functional magnetic resonance imaging), a method that precisely identifies areas of brain activity, to confirm their results. They found that when the tool appeared on the right, the brain’s classic motor areas responded to it. If the tool was on the left, the motor areas weren’t as active. According to Handy, this indicates that when graspable items are on the right, the motor system recognizes that there is something to grab and attention is drawn automatically to that location.

"People had already shown that simply viewing graspable objects activates motor areas in the brain," explains Handy. "What we didn’t know was that graspable items can affect visual attention, and that it matters where these things are in visual space."

The team is now trying to understand whether being right-handed or left-handed influences visual attention and motor activity.

Handy’s co-authors on the paper include Scott T. Grafton, professor of psychological and brain sciences and the Director of the Dartmouth Brain Imaging Center; Neha M. Shroff, Dartmouth alum from the Class of ’02; Sarah Ketay, research assistant; and Michael S. Gazzaniga, Dean of the Faculty of Arts and Sciences at Dartmouth and a professor of psychological and brain sciences.


This study was funded by the National Institutes of Health.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>