Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants Build Knowledge of Their Visual World on Statistics

26.11.2002


Baby’s first look at the world is likely a dizzying array of shapes and motion that are meaningless to a newborn, but researchers at the University of Rochester have now shown that babies use relationships between objects to build an understanding of the world. By noting how often objects appear together, infants can efficiently take in more knowledge than if they were to simply see the same shapes individually, says the paper published in the current issue of Proceedings of the National Academy of Sciences.



Roughly 100 babies, all about nine months of age, watched a series of shapes such as squares, circles, and arrows appearing together on a screen while researchers watched the babies’ attention. József Fiser postdoctoral fellow and Richard N. Aslin, professor of brain and cognitive sciences, wanted to see if the nine-month-olds would pay more attention to the pairs of shapes that occurred most often in a crowded scene.

"It’s long been assumed that we use relationships among parts of scenes to learn which parts form whole objects, but the idea has never been tested, nor was it clear how early this ability develops," says Fiser. "This research shows that building a concept of the world by recognizing relationships among shapes in images is possibly innate, and a very essential ability in babies."


To plumb the minds of infants, Fiser and Aslin had to first devise an experiment that would test an infant’s interest-a notoriously difficult enterprise given that babies are poor communicators of their thoughts. Fiser and Aslin first tested their experiment on college students, asking them to sit in a secluded room and watch a video screen for 10 to 15 minutes. The students watched groups of six shapes appear on the screen for a second or two before being replaced by a new set. The students were then asked to pick out pairs of shapes that they saw together most often in the previous series. Most students balked, saying they couldn’t remember the frequency of pairs from the hundreds of scenes they’d just watched. But when pressed to pick out pairs, the students usually picked shapes that did indeed occur most often together in the series. "This was strong evidence that students had an ability to sense and automatically extract relationships visually," says Fiser.

The next step was to see if nine-month-olds would display this same ability. The babies sat on a parent’s lap in the room while the shapes appeared three at a time on a screen in front of them. After a pause, the shapes appeared again in pairs, and the researchers timed how long the infant stared at each pair. Fiser and Aslin wanted to know if they’d stare longer at the pairs that appeared more often together in the first series, or stare for a shorter time, or whether there was no correlation at all.

When the results of the 72 babies (the rest were dismissed because they wouldn’t cooperate with the pursuit of science) were tallied, a clear correlation emerged. The babies paid more attention when two shapes that had been paired in the first series were shown again together. The infants were using a sort of subconscious statistical analysis of the shapes to pick out those that were familiar, just as the students did.

"In order to make sense of the unknown you must be able to learn new things and represent them to yourself in an efficient way," says Fiser. "You don’t want a mechanism that will tell you that leaves are always found on cars just because you happened to see a leaf on a car once. You want a mechanism that will tell you that cars can exist without leaves and vice versa, while at the same time telling you that cars always come with wheels, for instance."

If a baby sees a leaf on a car, she would build a relationship between the two, perhaps calling the combination a "leafcar." But she might then see several cars without leaves on them and so the concept of leafcar is weakened as she unconsciously realizes that statistically, the concept of leafcar is more and more useless. Noting that every car she sees has wheels, however, becomes statistically more and more useful as it is reinforced with every new car she sees. This relationship-identification is important because the baby can build her knowledge base on it. When she sees a wheelbarrow, she’ll unconsciously note that while all cars have wheels, not all wheels have cars, and a new concept of wheels will begin to emerge. In this way, the frequency of relationships, and the predictability between visual objects allows her to build knowledge on knowledge in a hierarchical manner.

Fiser and Aslin are working on understanding more aspects of what innate ways we have of dealing with the visual world, including studying the very basis of the experiments themselves-why children pay attention at all. Fiser believes that simpler tests essentially bore infants, so the babies pay more attention to new stimuli. In more complex tests, however, it appears that babies tend to focus on those events that are familiar because they are trying to make sense of the scene and are using familiar sights to understand relationships and thus build their knowledge. Fiser hopes to elucidate this distinction further to shed more light on how our brain learns to encode the visual environment around us.

This research was funded by the National Science Foundation.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Full speed ahead for SmartEEs at Automotive Interiors Expo 2019

Flexible, organic and printed electronics conquer everyday life. The forecasts for growth promise increasing markets and opportunities for the industry. In Europe, top institutions and companies are engaged in research and further development of these technologies for tomorrow's markets and applications. However, access by SMEs is difficult. The European project SmartEEs - Smart Emerging Electronics Servicing works on the establishment of a European innovation network, which supports both the access to competences as well as the support of the enterprises with the assumption of innovations and the progress up to the commercialization.

It surrounds us and almost unconsciously accompanies us through everyday life - printed electronics. It starts with smart labels or RFID tags in clothing, we...

Im Focus: Energy-saving new LED phosphor

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz at the University of Innsbruck have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes.

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

High-efficiency thermoelectric materials: New insights into tin selenide

25.04.2019 | Materials Sciences

Salish seafloor mapping identifies earthquake and tsunami risks

25.04.2019 | Earth Sciences

Using DNA templates to harness the sun's energy

25.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>