Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The three-and-a-half pound microchip: Environmental implications of the IT revolution

06.11.2002


Microchips may be small, but their impact on our world has been huge. And this impact goes beyond the obvious effects of e-mail, cell phones and electronic organizers: A new study shows that the "environmental weight" of microchips far exceeds their small size.



Scientists have estimated that producing a single two-gram chip — the tiny wafer used for memory in personal computers — requires at least 3.7 pounds of fossil fuel and chemical inputs. The findings were reported Oct. 25 on the Web site of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society. The print version of the paper is scheduled for the Dec. 15 edition of the journal.

"The public needs to be aware that the technology is not free; the environmental footprint of the device is much more substantial than its small physical size would suggest," says Eric Williams, Ph.D., of United Nations University in Tokyo, Japan. Williams is the lead author of the paper and director of a project investigating the environmental implications of the Information Technology revolution.


The results have crucial implications for the debate on dematerialization — the concept that technological progress should lead to radical reductions in the amount of materials and energy required to produce goods. The microchip is often seen as the prime example of dematerialization because of its high value and small size, but the new findings suggest this might not be the case.

The researchers performed a life cycle assessment of one 32-megabyte DRAM chip, tracing it through every level of production, from raw materials to the final product. In doing so, they estimated the total energy, fossil fuels and chemicals consumed in production processes. Fossil fuel use correlates with carbon dioxide emissions, and chemical use is suggestive of potential pollution impacts on local air, water and soil.

Each chip required 3.5 pounds of fossil fuels, 0.16 pounds of chemicals, 70.5 pounds of water and 1.5 pounds of elemental gases (mainly nitrogen).

When compared to more traditional products, such as the automobile, the microchip’s inordinate energy requirements become stark. Manufacturing one passenger car requires more than 3,300 pounds of fossil fuel — a great deal more than one microchip. A car, however, also weighs much more than a microchip. An illustrative figure is the ratio of fossil fuel and chemical inputs to the weight of the final product, excluding energy from the use phase (i.e., gasoline to run a car or electricity to run a computer). This ratio is about 2-to-1 for a car. For a microchip, it is about 630-to-1.

The rapid turnover of computer technology — making yesterday’s pinnacle of desktop power obsolete today — also contributes to the environmental impact of the industry. If you buy five new computers over a period of 10 years, Williams says, the total energy to produce those computers would be 28 giga-joules (the unit of energy in the metric system). If you buy just one car during that same time period, the total energy would be 46 giga-joules. "The automobile energy is still higher," Williams says, "but the two are not so far apart, which is rather counter-intuitive given how much larger the automobile is."

The reason for the disparity in energy intensity is entropy — a measure of the amount of disorder in a system. Microchips and other high-tech goods are extremely low-entropy, highly organized forms of matter. And since they are manufactured from high-entropy starting materials, like quartz, it only makes sense that their fabrication would require large investments of energy, the researchers say. Producing silicon wafers from quartz uses 160 times the energy required to produce regular silicon, a material of much higher entropy.

"I think there is a general trend toward lower entropy of goods overall," Williams says. This could imply a continual increase in energy and chemical use as industry produces more high-tech, highly organized products. But it is not clear yet how much this high energy impact is offset by savings from increases in processing efficiency, Williams cautions. He stresses that further research is essential, but, "It sends a clear signal that energy use in purification and processing of high-tech materials is much more important than generally perceived."


###
Other collaborators on the paper were Robert U. Ayres of INSEAD in Fontainebleau, France, and Miriam Heller of the National Science Foundation in Arlington, Va. The research was funded by the Japan Foundation-Center for Global Partnership, the Takeda Foundation, the United Nations University/Institute of Advanced Studies and the Fulbright Foundation.



— Jason Gorss

Beverly Hassell | EurekAlert!
Further information:
http://www.acs.org/

More articles from Studies and Analyses:

nachricht How to design city streets more fairly
18.05.2020 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Insects: Largest study to date confirms declines on land, but finds recoveries in freshwater – Highly variable trends
24.04.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: NASA's Curiosity rover finds clues to chilly ancient Mars buried in rocks

By studying the chemical elements on Mars today -- including carbon and oxygen -- scientists can work backwards to piece together the history of a planet that once had the conditions necessary to support life.

Weaving this story, element by element, from roughly 140 million miles (225 million kilometers) away is a painstaking process. But scientists aren't the type...

Im Focus: Making quantum 'waves' in ultrathin materials

Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale

Wavelike, collective oscillations of electrons known as "plasmons" are very important for determining the optical and electronic properties of metals.

Im Focus: When proteins work together, but travel alone

Proteins, the microscopic “workhorses” that perform all the functions essential to life, are team players: in order to do their job, they often need to assemble into precise structures called protein complexes. These complexes, however, can be dynamic and short-lived, with proteins coming together but disbanding soon after.

In a new paper published in PNAS, researchers from the Max Planck Institute for Dynamics and Self-Organization, the University of Oxford, and Sorbonne...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

New gravitational-wave model can bring neutron stars into even sharper focus

22.05.2020 | Physics and Astronomy

A replaceable, more efficient filter for N95 masks

22.05.2020 | Materials Sciences

Capturing the coordinated dance between electrons and nuclei in a light-excited molecule

22.05.2020 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>