Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People near freeways are exposed to 30 times the concentration of dangerous particles

18.10.2002


People who live, work or travel within 165 feet downwind of a major freeway or busy intersection are exposed to potentially hazardous particle concentrations up to 30 times greater than normal background concentrations found at a greater distance, according to two recently published UCLA studies.



The studies -- published in the Journal of the Air and Waste Management Association and in Atmospheric Environment -- show that proximity to a major freeway or highway dramatically increases exposure to "ultrafine" particles (tiny particles less than 0.1 micrometers in diameter), which are linked to neurological changes, mild pulmonary inflammation and cardiovascular problems. The U.S. Environmental Protection Agency (EPA) currently regulates particles less than 2.5 micrometers in diameter, and ultrafines represent the very smallest particles inhaled by the public.

Traffic-related air pollution is of great concern to Los Angeles, which has the most severe particle air-quality problem in the United States. The Los Angeles Basin is home to more than 15 million residents and 10 million vehicles contributing to its daily traffic. Motor vehicle emissions represent the most significant source of ultrafine particles. Moreover, recent toxicological studies have shown that ultrafine particles are more toxic than larger particles, potentially leading to increased mortality and illness with increased exposure to particulate matter.


"We believe this is the first study conducted in the United States that provides a detailed spatial profile of ultrafine particles near freeways," said William C. Hinds, a professor of environmental health sciences in the UCLA School of Public Health, who co-authored the studies with Yifang Zhu, a doctoral candidate in the School of Public Health.

The studies, conducted through the Southern California Particle Center and Supersite (SCPCS), assessed the size-distribution and concentration of the tiny ultrafine particles near major freeways. The first study focused on Interstate 405, one of the nation’s busiest freeways, with 93 percent of the traffic composed of gasoline-powered cars. The second study looked at the 710 freeway, which has more than 25 percent of its traffic derived from heavy-duty diesel trucks.

By measuring the number of particles and their size at varying distances from the 405 and 710, Hinds and Zhu concluded that the number of ultrafine particles downwind near both freeways was approximately 25 to 30 times greater than the number upwind. The drop in the number of ultrafine particles occurred rapidly with increasing distance from the freeway, falling to 30 percent of peak concentration at 330 feet. The rapid decrease and dilution in particle concentration was due to several factors, including atmospheric dispersion, coagulation, and wind direction and speed.

Both Hinds and Zhu concur that better understanding of the size and concentration of ultrafine particles is vital, particularly in a city with 85 million vehicle-miles traveled on its freeways on an average day.

"The objectives of the study include providing scientists with a way to predict exposure concentrations to ultrafine particles near freeways in order to facilitate health studies and provide data for the development of an air-quality standard for ultrafine particles," Zhu said.

The studies also examined the concentrations of carbon monoxide (CO), black carbon (BC) and particle mass. Both CO and BC concentrations are closely related to vehicle emissions. Like ultrafines, CO and BC concentrations decreased significantly (70 percent to 80 percent) within the first 330 feet downwind of the freeway. This confirms the notion that vehicular exhaust is a major source of these pollutants near a major roadway.

The SCPCS -- housed in the School of Public Health and the Institute of the Environment at UCLA, and funded by the EPA’s Science To Achieve Results (STAR) program and California Air Resources Board -- brings together outstanding scientists from leading universities throughout the nation to create dynamic new ways of investigating the health effects of particulate matter and to secure the protection of public health by better informing policy.

Wendy Hunter | EurekAlert!
Further information:
http://www.scpcs.ucla.edu

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

Im Focus: Peppered with gold

Research team presents novel transmitter for terahertz waves

Terahertz waves are becoming ever more important in science and technology. They enable us to unravel the properties of future materials, test the quality of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

3D printer sensors could make breath tests for diabetes possible

27.03.2020 | Power and Electrical Engineering

TU Bergakademie Freiberg researches virus inhibitors from the sea

27.03.2020 | Life Sciences

The Venus flytrap effect: new study shows progress in immune proteins research

27.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>