Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

People near freeways are exposed to 30 times the concentration of dangerous particles

18.10.2002


People who live, work or travel within 165 feet downwind of a major freeway or busy intersection are exposed to potentially hazardous particle concentrations up to 30 times greater than normal background concentrations found at a greater distance, according to two recently published UCLA studies.



The studies -- published in the Journal of the Air and Waste Management Association and in Atmospheric Environment -- show that proximity to a major freeway or highway dramatically increases exposure to "ultrafine" particles (tiny particles less than 0.1 micrometers in diameter), which are linked to neurological changes, mild pulmonary inflammation and cardiovascular problems. The U.S. Environmental Protection Agency (EPA) currently regulates particles less than 2.5 micrometers in diameter, and ultrafines represent the very smallest particles inhaled by the public.

Traffic-related air pollution is of great concern to Los Angeles, which has the most severe particle air-quality problem in the United States. The Los Angeles Basin is home to more than 15 million residents and 10 million vehicles contributing to its daily traffic. Motor vehicle emissions represent the most significant source of ultrafine particles. Moreover, recent toxicological studies have shown that ultrafine particles are more toxic than larger particles, potentially leading to increased mortality and illness with increased exposure to particulate matter.


"We believe this is the first study conducted in the United States that provides a detailed spatial profile of ultrafine particles near freeways," said William C. Hinds, a professor of environmental health sciences in the UCLA School of Public Health, who co-authored the studies with Yifang Zhu, a doctoral candidate in the School of Public Health.

The studies, conducted through the Southern California Particle Center and Supersite (SCPCS), assessed the size-distribution and concentration of the tiny ultrafine particles near major freeways. The first study focused on Interstate 405, one of the nation’s busiest freeways, with 93 percent of the traffic composed of gasoline-powered cars. The second study looked at the 710 freeway, which has more than 25 percent of its traffic derived from heavy-duty diesel trucks.

By measuring the number of particles and their size at varying distances from the 405 and 710, Hinds and Zhu concluded that the number of ultrafine particles downwind near both freeways was approximately 25 to 30 times greater than the number upwind. The drop in the number of ultrafine particles occurred rapidly with increasing distance from the freeway, falling to 30 percent of peak concentration at 330 feet. The rapid decrease and dilution in particle concentration was due to several factors, including atmospheric dispersion, coagulation, and wind direction and speed.

Both Hinds and Zhu concur that better understanding of the size and concentration of ultrafine particles is vital, particularly in a city with 85 million vehicle-miles traveled on its freeways on an average day.

"The objectives of the study include providing scientists with a way to predict exposure concentrations to ultrafine particles near freeways in order to facilitate health studies and provide data for the development of an air-quality standard for ultrafine particles," Zhu said.

The studies also examined the concentrations of carbon monoxide (CO), black carbon (BC) and particle mass. Both CO and BC concentrations are closely related to vehicle emissions. Like ultrafines, CO and BC concentrations decreased significantly (70 percent to 80 percent) within the first 330 feet downwind of the freeway. This confirms the notion that vehicular exhaust is a major source of these pollutants near a major roadway.

The SCPCS -- housed in the School of Public Health and the Institute of the Environment at UCLA, and funded by the EPA’s Science To Achieve Results (STAR) program and California Air Resources Board -- brings together outstanding scientists from leading universities throughout the nation to create dynamic new ways of investigating the health effects of particulate matter and to secure the protection of public health by better informing policy.

Wendy Hunter | EurekAlert!
Further information:
http://www.scpcs.ucla.edu

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>