Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could Climate Change Impact Costa Rica? New Study Says Yes

11.07.2008
While melting Arctic sea ice and glaciers have become a symbol of climate change, new research from the University of Massachusetts Amherst indicates that highland forests in Costa Rica could also be seriously affected by future changes in climate, reducing the number of species in a region famous for its biodiversity.

“Central America is a major, emerging “hot spot” in the tropics where climate change impacts on the environment will be pronounced, and the loss of species associated with climate has already been identified,” says doctoral candidate Ambarish Karmalkar of the UMass Amherst Climate System Research Center.

He recently attended the first conference organized in Costa Rica to study this issue. “We have completed a regional climate model showing that many areas of Costa Rica will become warmer and drier as climate change accelerates, and these changes will be amplified at higher elevations.”

Additional members of the research team include Raymond Bradley, a professor of geosciences at UMass Amherst, and Henry Diaz of the National Oceanic and Atmospheric Administration.

According to Karmalkar, Costa Rica has a unique geography that supports a stunning array of plants, animals and insects. The land begins at sea level on both the western Pacific coast and the eastern Caribbean coast, rising to over 3,000 meters above sea level in the central mountain range. As the land rises, differences in temperature and precipitation caused by elevation create an array of distinct ecosystems stacked on top of each other, each one housing a unique biological community.

Above 1,000 meters, rising air creates a continual cloud layer that constantly bathes the vegetation in horizontal precipitation, allowing plants and animals to survive the dry season from December to April. These cloud forests are essential to maintaining freshwater resources in Costa Rica, and the height at which the clouds develop is a critical factor for these ecosystems. Since they are highly dependant on temperature and precipitation, these ecosystems are particularly vulnerable to climate change.

To predict the effects of climate change, a regional modeling system capable of accommodating the complex topography of Central America was chosen. After validating the computer model using rainfall and temperature data collected in Central America between 1961 and 1990, the team looked at what would happen if carbon dioxide in the atmosphere doubled. The results of this medium-to-high scenario, called the A2 scenario in reports issued by the Intergovernmental Panel on Climate Change, were striking.

“If carbon dioxide levels double, this region will not only experience an increase in temperature of more than three Kelvins, but all future temperatures will likely be higher than the complete range of present-day temperatures,” says Karmalkar. “In addition, the model simulation indicates that high elevation Pacific slopes and the Caribbean lowlands will receive up to 30 percent less precipitation. Simulations also indicate an overall increase in the height of the cloud base of up to 300 meters.”

According to Karmalkar, as temperatures rise, various ecosystems will try to migrate to where they are comfortable, moving in an upslope direction in this case. As they migrate, plants and animals will disturb other species, and eventually run out of space as they reach the top of the mountains. The result may be a loss of many species that can’t survive the new conditions.

“After the extinction of the golden toad sometime between 1987 and 1989, corresponding with a warm event in the Pacific Ocean, scientists began relating climate change to the loss of biodiversity in Costa Rica,” says Karmalkar. “Since then, the Monteverde Institute has been documenting biological changes that could be related to climate change.”

Karmalkar plans to study the entire region of Central America, determining large climate dynamics of the region and how that will change in the future. “Central America has a unique annual cycle of precipitation, with a midsummer drought that occurs during July and August,” says Karmalkar. “Knowing how climate change will affect this cycle will be important for agriculture, which is an integral part of the economy of the region.”

Ambarish Karmalkar | Newswise Science News
Further information:
http://www.umass.edu/newsoffice

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>