Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spray Improves Plants’ Cold Tolerance

10.07.2008
Studies indicate a spray-on formula increases plants’ tolerance of cold temperatures by several degrees.

The spray, which is not yet commercially available, can improve plants’ cold tolerance between 2.2 and 9.4 degrees Fahrenheit, depending upon the species, according to Dr. David Francko, a professor of botany who co-developed the spray and who serves as dean of The University of Alabama graduate school and assistant vice president for academic affairs.

Research results indicate the spray, which the developers have named Freeze-Pruf, is effective on a variety of plants, including palms, tropical houseplants, bananas, citrus plants and flowers. Commercial growers, including those growing edible bananas in south Alabama, would benefit from the longer growing season that a more cold tolerant plant would provide.

“It moves your temperature zone about 200 miles, so it’s highly significant,” Francko said of the spray’s impact on banana plants. “For growers in the Mobile area, for example, treated plants would sustain the same damage that someone in Orlando would have who’s not treating their plants.”

Francko, who developed the spray along with Kenneth Wilson, Quinn Li and Alejandra Equiza, all from Miami (Ohio) University, envisions the spray also appealing to backyard gardeners looking to protect flowers from a late frost and nursery owners looking to cash in on an approved appearance for their high dollar ornamentals.

A patent application on the product, a novel mixture that combines five ingredients in a water-based spray formula, was filed earlier this year. The inventors are working with The University of Alabama's Office for Technology Transfer on the possibility of licensing the product to a company for commercial production or, alternatively, forming a UA spin-off venture to commercialize the technology.

“Each ingredient has a different function, but when you put them all together you get an effect that is larger than any single component, alone,” Francko said. “It’s non-toxic, it’s cheap, and the idea is to apply it once per season.” Each of the ingredients in Freeze-Pruf is already used, for other reasons, in various foods or in food production.

Francko, who received widespread media attention, including a national television appearance alongside Martha Stewart, following his 2003 publication of “Palms Won’t Grow Here and Other Myths,” called cold tolerance products “one of the holy grails of horticulture.

“There are a number of existing patents designed to improve cold tolerance,” Francko said, “but the best that is out there gets you about 1 to 2 degrees centigrade, or 2 to 4 degrees Fahrenheit, of freeze protection.”

And the existing sprays, Francko says, typically protect plants in weather only as low as the mid to upper 20s Fahrenheit. “Our spray works all the way down to below zero Fahrenheit, depending on the plant you’re working on. It really does take advantage of the plant’s genetic pre-adaptation and improves it.”

Plants naturally use two mechanisms in attempts to survive cold, said Francko. Similar to how a vehicle’s radiator contains a cryoprotectant which prevents it from freezing, plants have a built-in non-toxic version which allows cells to “super cool” below the normal temperature at which water freezes. Secondly, Francko said, even when ice does form within some plants, another natural mechanism enables them to sometimes survive ice crystal damage.

“Anything that you do to improve plant cold tolerance, you want to enhance those two mechanisms,” Francko said. “Nothing in our formulation is part of the normal pathway that a plant uses to acclimate to the cold. So, we are adding extra capacity to what the plant normally can do, not replacing or diminishing that native capacity,” said Francko.

Freeze-Pruf lowers both the temperature at which damage first becomes noticeable in plants as well as the temperature that would normally kill the plant, according to the research results. “It protects both the foliage and the flower,” Francko said.

The formula was scientifically tested in the laboratory and in the field, using both visual damage and the results of photosynthetic assays to measure foliar and flower damage. The photosynthetic assay was a biochemical analysis to check the spray’s effectiveness at the sub-cellular level.

The spray is already cost effective, Francko said, and researchers are exploring possible ways to perfect it so even smaller quantities of spray would bring similar results.

Note: To request art, contact cbryant@ur.ua.edu

Chris Bryant | Newswise Science News
Further information:
http://www.ur.ua.edu

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Study clarifies kinship of important plant group

05.08.2020 | Life Sciences

Human cell-based test systems for toxicity studies: Ready-to-use Toxicity Assay (hiPSC)

05.08.2020 | Life Sciences

Molecular Forces: The Surprising Stretching Behaviour of DNA

05.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>