Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M study: Herceptin targets breast cancer stem cells

09.07.2008
HER2 gene causes cancer stem cells to multiply, spread

A gene that is overexpressed in 20 percent of breast cancers increases the number of cancer stem cells, the cells that fuel a tumor’s growth and spread, according to a new study from the University of Michigan Comprehensive Cancer Center.

The gene, HER2, causes cancer stem cells to multiply and spread, explaining why HER2 has been linked to a more aggressive type of breast cancer and to metastatic disease, in which the cancer has spread beyond the breast, the researchers say.

Further, the drug Herceptin, which is used to treat HER2-positive breast cancer, was found to target and destroy the cancer stem cells. Results of the study appear online in the journal Oncogene.

“This work suggests that the reason drugs that target HER2, such as Herceptin and Lapatanib, are so effective in breast cancer is that they target the cancer stem cell population. This finding provides further evidence for the cancer stem cell hypothesis,” says study author Max S. Wicha, M.D., Distinguished Professor of Oncology and director of the U-M Comprehensive Cancer Center.

The cancer stem cell hypothesis says that tumors originate in a small number of cells, called cancer stem cells, and that these cells are responsible for fueling a tumor’s growth. These cells represent fewer than 5 percent of the cells in a tumor. Wicha’s lab was part of the team that first identified stem cells in human breast cancer in 2003.

In the current study, researchers found that breast cancer cells overexpressing the HER2 gene had four to five times more cancer stem cells, compared to HER2-negative cancers. In addition, the HER2-positive cells caused the cancer stem cells to invade surrounding tissue, suggesting that HER2 is driving the invasiveness and spread of cancer.

The researchers then looked at the drug Herceptin, which is used to treat HER2-positive breast cancer. They found Herceptin reduced the number of cancer stem cells in the HER2-positive breast cancer cell lines by 80 percent, dropping it to the same levels seen in HER2-negative cell lines.

When HER2 was not overexpressed in the cell cultures, the researchers found, the cancer stem cell population did not increase. Nor did Herceptin have any effect on the HER2-negative cells, which is consistent with how Herceptin is used in the clinic.

“We are now studying what pathways are activated by HER2 overexpression. Our hope is that we could develop inhibitors of these pathways that might be effective in targeting cancer stem cells in women whose tumors do not overexpress HER2 or those who are resistant to Herceptin,” says study author Hasan Korkaya, Ph.D., a U-M research fellow in internal medicine.

Breast cancer statistics: 184,450 Americans will be diagnosed with breast cancer this year and 40,930 will die from the disease, according to the American Cancer Society. About 20 percent of breast cancers are considered HER2-positive.

Additional authors: Amanda K. Paulson, a U-M undergraduate student, and Flora Iovino, a U-M research fellow in internal medicine

Funding: National Institutes of Health, National Cancer Institute, A. Alfred Taubman Medical Research Institute at the U-M Medical School

Reference: Oncogene, advance online publication June 30, 2008; doi: 10.1038/onc.2008.207

Resources:
U-M Cancer AnswerLine, 800-865-1125
Cancer’s Stem Cell Revolution, www.mcancer.org/stemcells

Nicole Fawcett | University of Michigan
Further information:
http://www.mcancer.org/stemcells
http://www.umich.edu

More articles from Studies and Analyses:

nachricht Forest Bird Community is endangered in South America
12.02.2019 | Humboldt-Universität zu Berlin

nachricht Even psychological placebos have an effect
05.02.2019 | Universität Basel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

Im Focus: Cryo-force spectroscopy reveals the mechanical properties of DNA components

Physicists from the University of Basel have developed a new method to examine the elasticity and binding properties of DNA molecules on a surface at extremely low temperatures. With a combination of cryo-force spectroscopy and computer simulations, they were able to show that DNA molecules behave like a chain of small coil springs. The researchers reported their findings in Nature Communications.

DNA is not only a popular research topic because it contains the blueprint for life – it can also be used to produce tiny components for technical applications.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Gravitational waves will settle cosmic conundrum

15.02.2019 | Physics and Astronomy

Spintronics by 'straintronics'

15.02.2019 | Physics and Astronomy

Platinum nanoparticles for selective treatment of liver cancer cells

15.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>