Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers identify tumor suppressor that manages cellular cleaning and recycling proceses

07.07.2008
Findings provide insight into regulation of trafficking pathways
Researchers at the University of Southern California (USC) have identified a specific tumor suppressor that manages membrane traffic routes for cellular cleaning and recycling.

The study will be published in the July issue of the journal Nature Cell Biology, and is now available online.

"Our studies indicate that UVRAG tumor suppressor functionally connects and manages two distinct but converged membrane traffic routes for garbage cleaning and cargo recycling," says Chengyu Liang, M.D., Ph.D., assistant professor of research in the Department of Molecular Microbiology and Immunology at the Keck School of Medicine of USC.

The study identified a novel mechanism of the UVRAG tumor suppressor in regulation of autophagy, a mechanism that enables cells to digest or turn over their own contents for maintaining homeostasis (a balanced, stable condition) and responding to various stresses.

Autophagy is marked by the assembly of specialized vesicles called autophagosomes (the cellular equivalent of garbage bags) that engulf damaged proteins, organelles and invading microbes. The "bagged garbage" is then delivered to lysosomes (the cell's garbage disposal system) through autophagic trafficking that involves autophagosome-lysosome fusion. This fusion disposes of waste with the help of lysosomal enzymes for recycling.

The findings of the study indicate that the tumor suppressor UVRAG not only facilities autophagosome formation, but also facilitates autophagosome maturation by association with the C Vps complex, a cellular machinery that facilitates membrane fusion.

In addition to identifying a novel mechanism of the UVRAG tumor suppressor in autophagy regulation, the study also identified UVRAG as an important effector protein in membrane trafficking and demonstrated the connection between endocytic and autophagic trafficking. The research conducted by Liang and colleagues with Jae U. Jung, Ph.D., professor and chair of the Department of Molecular Microbiology and Immunology at the Keck School of Medicine, suggests a functional connection and coordinated regulation of two distinct but converged membrane trafficking pathways.

"The report provides new insights into understanding some human diseases with compromised autophagic and endosomal trafficking, including cardiomyopathy (a disease of the heart muscle), myopathy (a neuromuscular disease), neuronal ceroid lipofuscinosis (genetic disorders of nerve cells) and Danon Disease )a genetic disorder characterized by heart problems)," Liang says.

The findings warrant further study into whether the UVRAG-mediated trafficking activity contributes to its tumor suppression function, she says.

Meghan Lewit | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>