Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lou Gehrig's protein found throughout brain, suggesting effects beyond motor neurons

19.06.2008
Two years ago researchers at the University of Pennsylvania School of Medicine discovered that misfolded proteins called TDP-43 accumulated in the motor areas of the brains of patients with amyotropic lateral sclerosis (ALS), or Lou Gehrig's disease.

Now, the same group has shown that TDP-43 accumulates throughout the brain, suggesting ALS has broader neurological effects than previously appreciated and treatments need to take into account more than motor neuron areas. Their article appeared in last month's issue of the Archives of Neurology.

"The primary implication for ALS patients is that we have identified a molecular target for new therapies," says co-author John Q. Trojanowski, MD, PhD, Director of Penn's Institute on Aging. "The other implication is that new therapies for ALS now need to go beyond treating only motor neurons."

Traditionally, ALS has been diagnosed based on muscle weakness and neurodegeneration of the upper and lower motor neurons that extend from the motor cortex to the spinal cord and brainstem motor neurons, which directly innervate voluntary muscles. For example, if you want to wiggle your big toe, the signal travels from the motor neuron in the cortex at the top of your head to a synapse on the lower spinal cord motor neurons in the lower back, which, in turn transmit the "wiggle" command by sending a signal to the muscles that move your big toe. Patients with ALS cannot wiggle their big toe or complete other voluntary muscle movements, including those carried out by their other extremities and eventually, by the diaphragm that moves air in and of their lungs.

The study was conducted by examining post-mortem brain tissue of 31 ALS patients. The accumulation of TDP-43 was imaged by detecting TDP-43 with an antibody specific for this protein. TDP-43 pathology was observed not only in the areas of the brain and spinal cord that control voluntary movements, as expected, but also in regions of the brain that involve cognition, executive functioning, memory, and involuntary muscle control. TDP-43 pathology was not observed in any of the controls that did not have ALS.

The pathological TDP-43 observed in ALS brains is different in two ways from normal TDP-43 that is found in most cells. The ALS-associated TDP-43 includes fragments of normal TDP-43 as well as other abnormally modified forms of TDP-43, and it is located in the cytoplasm of neurons; whereas, normal TDP-43 is found almost exclusively in the cell nucleus. In ALS, the pathological TDP-43 accumulates in large "globs," mainly in cell bodies.

"Our observation of TDP-43 in the brains of ALS patients suggests that ALS and two other neurodegenerative diseases called ALS- PLUS [ALS with cognitive impairments] and FTLD [frontotemporal lobar disease] may all have the same underlying molecular pathology involving abnormal TDP-43," says Trojanowski. "This constitutes a paradigm shift in the way we think about these diseases."

Current research is focused on understanding the basic biology of TDP-43 in cell culture systems. The research team is now trying to find out whether pathological TDP-43 causes nerve cells to lose their normal function or if they take on a toxic function. "The over-riding goal that drives our work is helping ALS patients," says Trojanowski.

Felix Geser, of Penn, was lead author on this study. Linda Wong, Maria Martinez-Lage, Lauren Elman, Leo McCluskey, Sharon Xie, and Virginia Lee, all of Penn, and Nicholas Brandmeir, of Albany Medical College, Albany, NY were co-authors. This research was supported by grants from the National Institute on Aging.

PENN Medicine is a $3.5 billion enterprise dedicated to the related missions of medical education, biomedical research, and excellence in patient care. PENN Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System.

Penn's School of Medicine is currently ranked #4 in the nation in U.S.News & World Report's survey of top research-oriented medical schools; and, according to most recent data from the National Institutes of Health, received over $379 million in NIH research funds in the 2006 fiscal year. Supporting 1,400 fulltime faculty and 700 students, the School of Medicine is recognized worldwide for its superior education and training of the next generation of physician-scientists and leaders of academic medicine.

The University of Pennsylvania Health System includes three hospitals — its flagship hospital, the Hospital of the University of Pennsylvania, rated one of the nation's "Honor Roll" hospitals by U.S.News & World Report; Pennsylvania Hospital, the nation's first hospital; and Penn Presbyterian Medical Center — a faculty practice plan; a primary-care provider network; two multispecialty satellite facilities; and home care and hospice.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>