Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique feeding behavior discovered for snakes

11.07.2002


Field Museum scientists describe "loop and pull" in Nature

Snakes are known to swallow their prey whole, which limits the size of what they can eat. But now scientists have discovered that a species of snake can tear apart its prey. This snake loops its body around a crab to hold one end while using its mouth to pull off legs or rip the crab’s body into pieces.

This "loop and pull" method allows a snake to eat crabs that are relatively huge – far too large to swallow whole. Even more astounding, this appears to be solely based on a unique behavior rather than newly derived physical traits.

The research will be published in Nature June 11, 2002.

"This rather ordinary looking snake is breaking all the rules," says Harold Voris, co-author and curator of amphibians and reptiles at The Field Museum. "Gerarda prevostiana is the only snake to tear oversized prey apart, yet you could not have predicted this on the basis of its morphology [form and structure]. It appears to have accomplished this feat solely through a unique behavior, not morphological adaptation."

In fact, the novel behavior has overcome the limitations that limb loss and body form changes imposed on snakes early in their evolution, Voris says. "These results serve notice that behavioral changes alone may allow for major and exceptional changes in life style."

The snakes and crabs were collected in a mangrove forest of Singapore. The unique feeding behavior was recorded at night in a dark room with infrared video cameras. In 85% of the trials, the snake used "loop and pull."

The scientists captured two G. prevostiana that had consumed pieces of crabs much larger than any used in the lab trials. This verified that the feeding behavior was not limited to the lab.

A sister species, Fordonia leucobalia, was also found to pull apart oversized prey, but it has hypertrophied cranial musculature and short, blunt teeth that facilitate this behavior.

Although the two snake species consume the same species of crabs, they share this food source by specializing on different stages. G. prevostiana specializes in soft, newly molted crabs while F. leucobalia eats the crabs after their shells get hard. Another snake in the same mangroves eat only snapping shrimp while a fourth eats only fish.

"These findings represent an interesting example of evolutionary divergence of behavior between closely related species," Voris says. "This is only one of many examples of how the tropics are uniquely suited for gaining insights into evolution, diversity and specialization."

###

The other authors are Bruce Jayne, University of Cincinnati, and Peter Ng, National University of Singapore.

Greg Borzo | EurekAlert

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A simple, yet versatile, new design for chaotic oscillating circuitry inspired by prime numbers

22.05.2019 | Power and Electrical Engineering

Synthesis of helical ladder polymers

21.05.2019 | Materials Sciences

Ultra-thin superlattices from gold nanoparticles for nanophotonics

21.05.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>