Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change hastens extinction in Madagascar's reptiles and amphibians

10.06.2008
New research from the American Museum of Natural History shows animals are moving uphill

New research from the American Museum of Natural History provides the first detailed study showing that global warming forces species to move up tropical mountains as their habitats shift upward.

Christopher Raxworthy, Associate Curator in the Department of Herpetology, predicts that at least three species of amphibians and reptiles found in Madagascar's mountainous north could go extinct between 2050 and 2100 because of habitat loss associated with rising global temperatures. These species, currently moving upslope to compensate for habitat loss at lower and warmer altitudes, will eventually have no place to move to.

"Two things together—highly localized distribution close to the very highest summits, and the magnitude of these upslope shifts in response to ongoing warming—make a poisonous cocktail for extinction," said Raxworthy. In a paper published this month in Global Change Biology, Raxworthy and colleagues found overall trends for elevation changes among 30 species of amphibians and reptiles. Uphill movement is a predicted response to increased temperatures, and other studies, including that of J. Alan Pounds in Costa Rica, have provided some empirical evidence of how tropical animals respond to climate change. Raxworthy's research, however, is distinguished by the number and diversity of species, the demonstrated meteorological changes over the same time period, the relatively large shifts in elevation, and the broader assessment of extinction vulnerability for tropical montane communities. Currently, there is also a dearth of information available concerning climate impacts on biodiversity for tropical regions.

Raxworthy has been surveying the diversity of Madagascar's herpetological assemblage since 1985 and discovered the uphill migration almost by chance while in the field. On repeated surveys of northern Madagascar's mountains, the Tsaratanana Massif, he noticed that some species were missing from camps where they'd been previously observed. Moreover, some of these "missing" species popped up at the next higher elevation surveyed. "I noted this in the field as strange, but when I later sat down and looked at the data, the trend persisted," Raxworthy explains. He culled elevation records and was able to compare surveys of animals over a ten-year period.

The results were dramatic. Among 30 species of geckos, skinks, chameleons, and frogs, and controlling for sampling effort, an average shift uphill of 19 to 51 meters (62 to 167 feet) was observed over the decade. When these results were compared with meteorological records and climate change simulations, the movement of animals could be linked to temperature increases of 0.1°C to 0.37°C (0.18°F to 0.67°F) over the same decade, which corresponds to an expected upslope movement of 17 to 74 meters (59 to 243 feet). Raxworthy's results are robust because of the diversity of species included in his analyses. These animals come from five different families of amphibians and reptiles—narrow-mouthed toads, mantelline frogs, chameleons, geckos, and skinks—making it unlikely that a simple phenological change could explain the upward movement. "When you see a general trend across all these groups of organisms, it is likely to be related to a broad explanation like general temperature warming, not something more subtle such as seasonal variation," says Raxworthy.

The direct link between observed movement up mountains, possible extinction, and climate change has consequences for Madagascar's network of national parks. The government of Madagascar is currently planning to set aside 10 percent of its landmass for conservation purposes, and previous research by Raxworthy and colleagues published in Science in April used the distribution of 2,300 species of animals to map the areas of this island nation that provide adequate habitat for all species. "The Malagasy government is creating important new reserves and protecting forests. Sadly, however, with a phenomenon like global warming, species will move upslope, and so eventually may still lose all their habitat and go extinct," says Raxworthy. "This conservation problem thus requires a global solution."

Kristin Phillips | EurekAlert!
Further information:
http://www.amnh.org

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>