Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown researchers work toward ending cartilage loss

05.06.2008
Brown University nanotechnology engineer Thomas Webster has published a first-ever study that shows how a surface of carbon nanotubes combined with electrical pulses could help regenerate cartilage naturally in the body.

Scientists have long wrestled with how to aid those who suffer cartilage damage and loss. One popular way is to inject an artificial gel that can imitate cartilage’s natural ability to act as the body’s shock absorber. But that solution is temporary, requiring follow-up injections.

Now Brown University nanotechnology specialist Thomas Webster has found a way to regenerate cartilage naturally by creating a synthetic surface that attracts cartilage-forming cells. These cells are then coaxed to multiply through electrical pulses. It’s the first study that has shown enhanced cartilage regeneration using this method; it appears in the current issue of the Journal of Biomedical Materials Research, Part A.

“Cartilage regeneration is a big problem,” said Webster, an associate professor in the Division of Engineering and the Department of Orthopaedics at Brown. “You don’t feel pain until significant cartilage damage has occurred and it’s bone rubbing on bone. That’s why research into how to regenerate cartilage is so important.”

Webster’s work involves carbon nanotubes, which are molecular-scale tubes of graphitic carbon that are among the stiffest and strongest fibers known and are great conductors of electrons. They are being studied intensively worldwide for a range of commercial, industrial and medical uses.

Webster and his team, including Brown researcher Dongwoo Khang and Grace Park from Purdue University, found that the tubes, due to their unique surface properties, work well for stimulating cartilage-forming cells, known scientifically as chondrocytes. The nanotube’s surface is rough; viewed under a microscope, it looks like a bumpy landscape. Yet that uneven surface closely resembles the contours of natural tissue, so cartilage cells see it as a natural environment to colonize.

“We’re tricking the body, so to speak,” Webster said. “It all goes back to the fact that the nanotubes are mimicking the natural roughness of tissues in the first place.”

Previous research has involved using a micron surface, which is smoother at the nanoscale. Webster said his team’s nanosurface works better than micron due to its roughness and because it can be shaped to fit the contours of the degenerated area, much like a Band-Aid.

The researchers also learned they could prod the cartilage cells to grow more densely by applying electrical pulses. Scientists don’t completely understand why electricity seems to trigger cartilage growth, but they think it helps calcium ions enter a cell, and calcium is known to play an integral role in growing cartilage.

The team plans to test the cartilage regeneration method procedure with animals, and if that is successful, to conduct the research on humans.

Webster’s cartilage regeneration studies parallel research he has done with bone regeneration and implants that was published last year in Nanotechnology. The principles are the same: Bone cells are more apt to adhere to a rough carbon nanotube surface than other surfaces and to colonize that surface. And tests by scientists in Japan and elsewhere have shown that electrical pulses stimulate bone cell growth.

The National Science Foundation, under the federal National Nanotechnology Initiative, funded the work.

Richard Lewis | EurekAlert!
Further information:
http://www.brown.edu

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>