Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diversity of Life at Tropics Related to Heat, Not Sunlight

29.05.2008
What causes tropical life to thrive: temperature, or sunlight?

The answer is not necessarily “both.” According to a study published online this week in PNAS Early Edition, the explosion of species at the tropics has much more to do with warmth than with light.

“The diversity was unrelated to productivity (from photosynthesis), but it was strongly related to temperature,” said University of Southern California biologist Jed Fuhrman, who led a group that analyzed bacterial samples from warm and cold oceans.

Fuhrman’s group found far greater diversity in samples taken near the equator. In particular, samples from low-productivity waters still contained many bacterial species, suggesting that photosynthesis has little influence on diversity.

Many researchers have tried to separate the influence of temperature and sunlight, Fuhrman said, but have found it hard to do by studying higher organisms.

Bacteria are ideal subjects because of their wide distribution and the recent availability of genetic fingerprinting, he added.

The question of what drives diversity is important to biologists who seek to uncover the basic rules governing life.

“Is diversity ruled by fundamental laws, and if so, what is the basis of them?” Fuhrman asked.

The so-called kinetic law links the rates of metabolism, reproduction and many other biological processes to the motion of atoms and molecules. Such motion increases with temperature, presumably speeding up the biological processes.

Fuhrman calls this “the Red Queen runs faster when she is hot” hypothesis.

Productivity also is thought to promote diversity by increasing the food supply. This is “the larger pie can be divided into more pieces” hypothesis.

The two hypotheses may both be valid, Fuhrman said, but his group’s results show that “the kinetics of metabolism, setting the pace for life, has strong influence on diversity.”

Biologists have known for centuries that animal and plant biodiversity is greatest at the tropics, though they have not agreed on whether temperature or productivity was the cause.

The Fuhrman group is the first to show that bacteria follow the same pattern. And as the PNAS study shows, bacteria are useful vehicles for probing the causes of biodiversity.

Fuhrman, holder of the McCulloch-Crosby Chair for Marine Biology in the USC College of Letters, Arts and Sciences, has been studying bacteria since the early 1980s, when new instruments and techniques greatly improved scientists’ ability to identify microbial species.

Since then, marine biologists have realized that bacteria play a dominant role in the oceans. More than half the carbon dioxide respired by marine organisms comes from bacteria, Fuhrman said. Bacteria also comprise most of the diversity on earth, control vital biogeochemical cycles, and form an integral part of the food chain.

“I study them because, even though they’re invisible, they’re incredibly important,” Fuhrman said.

Fuhrman was first author on the PNAS paper. His co-authors were USC graduate students Joshua Steele, Ian Hewson, Michael Schwalbach and Mark Brown; University of Oregon, Eugene biologist Jessica Green; and last author James Brown, from the University of New Mexico, Albuquerque.

The National Science Foundation supported the group’s research.

Carl Marziali | newswise
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>