Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies food-related clock in the brain

27.05.2008
Findings could help travelers, shift workers adjust to changes in time zones and overnight schedules

In investigating the intricacies of the body’s biological rhythms, scientists at Beth Israel Deaconess Medical Center (BIDMC) have discovered the existence of a “food-related clock” which can supersede the “light-based” master clock that serves as the body’s primary timekeeper.

The findings, which appear in the May 23 issue of the journal Science, help explain how animals adapt their circadian rhythms in order to avoid starvation, and suggest that by adjusting eating schedules, humans too can better cope with changes in time zones and nighttime schedules that leave them feeling groggy and jet-lagged.

“For a small mammal, finding food on a daily basis is a critical mission,” explains the study’s senior author Clifford Saper, MD, PhD, Chairman of the Department of Neurology at BIDMC and James Jackson Putnam Professor of Neurology at Harvard Medical School. “Even a few days of starvation is a common threat in natural environments and may result in the animal’s death.”

The suprachiasmatic nucleus (SCN), a group of cells in the brain’s hypothalamus, serves as the body’s primary biological clock. The SCN receives signals about the light-dark cycle through the visual system, and passes that information along to another cell group in the hypothalamus known as the dorsomedial nucleus (DMH). The DMH then organizes sleep-wake cycles, as well as cycles of activity, feeding and hormones.

“When food is readily available,” explains Saper, “this system works extremely well. Light signals from the retina help establish the animals’ circadian rhythms to the standard day-night cycle.” But, if food is not available during the normal wake period, animals need to be able to adapt to food that is available when they are ordinarily asleep.

In order to survive, animals appear to have developed a secondary “food-related” master clock. “This new timepiece enables animals to switch their sleep and wake schedules in order to maximize their opportunity of finding food,” notes Saper, who together with lead author Patrick Fuller, PhD, HMS Instructor in Neurology and coauthor Jun Lu, MD, PhD, HMS Assistant Professor of Neurology, set out to determine exactly where this clock was located.

“In addition to the oscillator cells in the SCN, there are other oscillator cells in the brain as well as in peripheral tissues like the stomach and liver that contribute to the development of animals’ food-based circadian rhythms,” says Saper. “Dissecting this large intertwined system posed a challenge.”

To overcome this obstacle, the authors used a genetically arrhythmic mouse in which one of the key genes for the biological clock, BMAL1, was disabled. They next placed the gene for BMAL1 into a viral vector which enabled them to restore a functional biological clock to only one spot in the brain at a time. Through this step-by-step analysis, the authors uncovered the feeding entrained clock in the DMH.

“We discovered that a single cycle of starvation followed by refeeding turns on the clock, so that it effectively overrides the suprachiasmatic nucleus and hijacks all of the circadian rhythms onto a new time zone that corresponds with food availability,” says Saper. And, he adds, the implications for travelers and shift workers are promising.

“Modern day humans may be able to use these findings in an adaptive way. If, for example, you are traveling from the U.S. to Japan, you are forced to adjust to an 11-hour time difference,” he notes. “Because the body’s biological clock can only shift a small amount each day, it takes the average person about a week to adjust to the new time zone. And, by then, it’s often time to turn around and come home.”

But, he adds, by adapting eating schedules, a traveler might be able to engage his second “feeding” clock and adjust more quickly to the new time zone.

“A period of fasting with no food at all for about 16 hours is enough to engage this new clock,” says Saper. “So, in this case, simply avoiding any food on the plane, and then eating as soon as you land, should help you to adjust – and avoid some of the uncomfortable feelings of jet lag.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>