Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies food-related clock in the brain

27.05.2008
Findings could help travelers, shift workers adjust to changes in time zones and overnight schedules

In investigating the intricacies of the body’s biological rhythms, scientists at Beth Israel Deaconess Medical Center (BIDMC) have discovered the existence of a “food-related clock” which can supersede the “light-based” master clock that serves as the body’s primary timekeeper.

The findings, which appear in the May 23 issue of the journal Science, help explain how animals adapt their circadian rhythms in order to avoid starvation, and suggest that by adjusting eating schedules, humans too can better cope with changes in time zones and nighttime schedules that leave them feeling groggy and jet-lagged.

“For a small mammal, finding food on a daily basis is a critical mission,” explains the study’s senior author Clifford Saper, MD, PhD, Chairman of the Department of Neurology at BIDMC and James Jackson Putnam Professor of Neurology at Harvard Medical School. “Even a few days of starvation is a common threat in natural environments and may result in the animal’s death.”

The suprachiasmatic nucleus (SCN), a group of cells in the brain’s hypothalamus, serves as the body’s primary biological clock. The SCN receives signals about the light-dark cycle through the visual system, and passes that information along to another cell group in the hypothalamus known as the dorsomedial nucleus (DMH). The DMH then organizes sleep-wake cycles, as well as cycles of activity, feeding and hormones.

“When food is readily available,” explains Saper, “this system works extremely well. Light signals from the retina help establish the animals’ circadian rhythms to the standard day-night cycle.” But, if food is not available during the normal wake period, animals need to be able to adapt to food that is available when they are ordinarily asleep.

In order to survive, animals appear to have developed a secondary “food-related” master clock. “This new timepiece enables animals to switch their sleep and wake schedules in order to maximize their opportunity of finding food,” notes Saper, who together with lead author Patrick Fuller, PhD, HMS Instructor in Neurology and coauthor Jun Lu, MD, PhD, HMS Assistant Professor of Neurology, set out to determine exactly where this clock was located.

“In addition to the oscillator cells in the SCN, there are other oscillator cells in the brain as well as in peripheral tissues like the stomach and liver that contribute to the development of animals’ food-based circadian rhythms,” says Saper. “Dissecting this large intertwined system posed a challenge.”

To overcome this obstacle, the authors used a genetically arrhythmic mouse in which one of the key genes for the biological clock, BMAL1, was disabled. They next placed the gene for BMAL1 into a viral vector which enabled them to restore a functional biological clock to only one spot in the brain at a time. Through this step-by-step analysis, the authors uncovered the feeding entrained clock in the DMH.

“We discovered that a single cycle of starvation followed by refeeding turns on the clock, so that it effectively overrides the suprachiasmatic nucleus and hijacks all of the circadian rhythms onto a new time zone that corresponds with food availability,” says Saper. And, he adds, the implications for travelers and shift workers are promising.

“Modern day humans may be able to use these findings in an adaptive way. If, for example, you are traveling from the U.S. to Japan, you are forced to adjust to an 11-hour time difference,” he notes. “Because the body’s biological clock can only shift a small amount each day, it takes the average person about a week to adjust to the new time zone. And, by then, it’s often time to turn around and come home.”

But, he adds, by adapting eating schedules, a traveler might be able to engage his second “feeding” clock and adjust more quickly to the new time zone.

“A period of fasting with no food at all for about 16 hours is enough to engage this new clock,” says Saper. “So, in this case, simply avoiding any food on the plane, and then eating as soon as you land, should help you to adjust – and avoid some of the uncomfortable feelings of jet lag.”

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.harvard.edu

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>