Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neuromuscular activation by means of vibrations

23.05.2008
A researcher from the Universidad Politécnica de Madrid has collaborated with the University of Granada in the development of a research study on the possible effects of vibrations as a mean of neuromuscular activation to improve jumping performance. The results suggest that the effect could be dependant on the level of training.

Lately, new technologies applied to improving performance and health have experienced a booming rise. One of those has been the use of vibrating platforms to improve athletic performance in general and muscular strength in particular.

The application of mechanical vibrations through technologies like vibrating platforms has been proposed by many recent studies as tool capable of increasing muscular performance. Nevertheless, the results offered are contradictory. This has motivated the group EFFECTS-262 of the Universidad de Granada, in collaboration with the Facultad de Ciencias de la Actividad Física y del Deporte at the Universidad Politécnica de Madrid, to try to clear this situation by evaluating the possible effects of a short vibration on the jumping abilities of young adults of both sexes.

A group of 114 university students, 37 of them male and 77 female, with an average of 19.6 years of age has been used as test subjects for an experiment to evaluate the height reached by the subjects when jumping, and compare the results with the height reached after a short stimulation by the vibration platform.

The main parameters to be controlled, since they accurately represent the characteristics of the vibration training, are: the frequency of the vibrations (number of vibration cycles per second, measured in hertz Hz), the time duration of the training measured in seconds or minutes, the amplitude of movement of the vibration source measured in millimeters and the vibration

charge that is generated (g)

The results of the study indicate that vibration stimuli ranging from 20 to 30 Hz and lasting from 90 to 120 seconds would generate a short decrease in the jumping heights achieved immediately after the application of the stimulation. However, such decrease seems to completely disappear after a short resting period. The test subjects recovered their normal jumping ability after a minute of recovery.

The researchers believe that vibration stimulation could cause a local temporal muscular fatigue that would be the cause of the decrease on the heights reached.

If the results from this study are compared with those presented by experiments with a similar focus, it could be suggested that such stimulation has stronger effects proportional to the level of the training that the subjects are accustomed to. The inclusion of test subjects with low training levels in this study* could account for the decrease in jumping heights. The researchers involved concluded that in subjects that are not actively training, it is convenient to have resting periods of at least a minute after stimulation before jumping to their full potential.

Ciencia y Sociedad | alfa
Further information:
http://www.jssm.org/vol6/n4/28/v6n4-28pdf.pdf

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>