Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biologists Are from Mars, Chemists Are from Venus?

05.05.2008
“Plays well with others.”

That popular phrase on a T-shirt is being taken to a whole new level in higher education these days, as experts in a variety of fields increasingly must work together to address some of society's biggest challenges, from a warming planet to cancer.

But how do scientists from different disciplines and institutions collaborate? How do they work together to incorporate the distinct perspectives, languages and research styles of their fields?

“When scientists from different disciplines say 'We work together,' we want to know what that means,” says Steve Fifield, associate policy scientist at the University of Delaware.

Fifield, who is affiliated with the Delaware Education Research and Development Center at UD, is leading research to uncover how scientists from different disciplines form working relationships. The two-year project is funded by a $197,300 grant from the National Science Foundation's Innovation and Organizational Sciences program.

The findings will shed light on scientific collaboration--a process about which little is known, but much is expected.

“Agencies such as the National Science Foundation have deemed large-scale interdisciplinary research projects critical to U.S. innovation and competitiveness,” Fifield notes. “Yet there have been few studies of how scientists actually bridge disciplinary boundaries. There's no 'how-to' for it--at least not yet,” he says, smiling.

Fifield's research team includes co-investigators Regina Smardon, a sociologist at the University of Virginia, and Karl Steiner, associate director of the Delaware Biotechnology Institute, along with postdoctoral researcher Katherine McGurn Centellas and graduate research assistant Jennifer Koester.

Two emerging research centers at UD are the focus of the study. The Center for Translational Cancer Research involves individuals from UD, Alfred I. duPont Hospital for Children/Nemours, Christiana Care Health System/Helen F. Graham Cancer Center, and the Delaware Biotechnology Institute. The center, under the direction of Mary C. Farach-Carson, professor of biological sciences, seeks to establish a pipeline for developing translational cancer researchers and clinicians, spanning the undergraduate to postgraduate levels, and to build teams of clinicians, biologists and engineers, chemists and computer scientists to attack cancer-related problems.

The Center for Critical Zone Research, led by Donald Sparks, the S. Hallock du Pont Chair of Plant and Soil Sciences, aims to develop a world-class, leading-edge research capability focusing on the Earth's “critical zone”--the life-sustaining environment from the treetops to the groundwater where complex interactions of rock, soil, water, air and living organisms occur. Interfacial chemistry, bionanotechnology, and environmental genomics are the center's primary research areas.

The project team has been busy interviewing researchers affiliated with the centers and observing them in labs, seminars, even tumor clinics, as well as social settings, such as monthly get-togethers at Grotto's Pizza.

“We're studying 'participation customs'--how groups of people interact,” Centellas says. An anthropologist with a background in biology, she also has significant international experience, studying the organizational structure and dynamics of research centers in Bolivia.

“Scientists come trained in a particular way according to their discipline,” she notes. “Each group comes with a different vocabulary. How does one group learn to communicate with another? How do people discuss problems and form collegial relationships? How does work get assigned--is it by expertise, by technical facility, by the availability of a grad student? We're getting into the nuts and bolts of people coming together,” she says.

Koester, a master's student in sociology, is observing researchers to see if their collaboration is static or dynamic.

“Are people actively involved in communicating with one another, dividing up tasks, or is it done mostly at a distance, or without much interaction?” she says. “That gives us a lot of insight into how transformative the process is.”

Koester eventually wants to become a professor herself, leading research projects and teaching students in social science.

Although the project only began last fall, the team already has several preliminary findings and will present their results at the American Sociological Society's annual meeting in August.

“We've discovered that individuals can find themselves narrowing back to a niche specialization when doing collaborative research,” Fifield says. “Thus, interdisciplinary research may tend to move people back to their core expertise.”

The scientists also have noticed differences in culture between academics doing cancer research versus clinicians (medical doctors) who want to pursue cancer research in academia. Some meetings begin at Christiana Hospital at 7 a.m., which is before the workday starts for many university researchers.

“It's a time-use issue--in how you think about what an hour is worth,” Centellas says. “People may need to modify certain behaviors to become part of a group.”

By the end of the two-year project, the team will better understand the kinds of choices and strategies that help researchers to collaborate--how people manage to achieve it, and what gets in the way. The research may not result in a “how-to” list, Fifield says, but the team will be able to offer take-away messages and tips.

“Right now, the processes of interdisciplinary research get black-boxed. They remain a bit of a mystery. We may be able to unpack that a bit,” he notes.

Tracey Bryant | newswise
Further information:
http://www.udel.edu

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

A new force for optical tweezers awakens

19.06.2019 | Physics and Astronomy

New AI system manages road infrastructure via Google Street View

19.06.2019 | Information Technology

A new manufacturing process for aluminum alloys

19.06.2019 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>