Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brookhaven Scientists Explore Brain's Reaction to Potent Hallucinogen

30.04.2008
Increasingly popular recreational drug, salvia, shows rapid uptake, short duration in animals

Brain-imaging studies performed in animals at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory provide researchers with clues about why an increasingly popular recreational drug that causes hallucinations and motor-function impairment in humans is abused. Using trace amounts of Salvia divinorum - also known as "salvia," a Mexican mint plant that can be smoked in the form of dried leaves or serum - Brookhaven scientists found that the drug's behavior in the brains of primates mimics the extremely fast and brief "high" observed in humans. Their results are now published online in the journal NeuroImage.

Quickly gaining popularity among teenagers and young adults, salvia is legal in most states, but is grabbing the attention of municipal lawmakers. Numerous states have placed controls on salvia or salvinorin A - the plant's active component - and others, including New York, are considering restrictions.

"This is probably one of the most potent hallucinogens known," said Brookhaven chemist Jacob Hooker, the lead author of the study, which is the first to look at how the drug travels through the brain. "It's really important that we study drugs like salvia and how they affect the brain in order to understand why they are abused and to investigate their medicinal relevance, both of which can inform policy makers."

Hooker and fellow researchers used positron emission tomography, or PET scanning, to watch the distribution of salvinorin A in the brains of anesthetized primates. In this technique, the scientists administer a radioactively labeled form of salvinorin A (at concentrations far below pharmacologically active doses) and use the PET scanner to track its site-specific concentrations in various brain regions.

Within 40 seconds of administration, the researchers found a peak concentration of salvinorin A in the brain - nearly 10 times faster than the rate at which cocaine enters the brain. About 16 minutes later, the drug was essentially gone. This pattern parallels the effects described by human users, who experience an almost immediate high that starts fading away within 5 to 10 minutes.

High concentrations of the drug were localized to the cerebellum and visual cortex, which are parts of the brain responsible for motor function and vision, respectively. Based on their results and published data from human use, the scientists estimate that just 10 micrograms of salvia in the brain is needed to cause psychoactive effects in humans.

Salvia doesn't cause the typical euphoric state associated with other hallucinogens like LSD, Hooker said. The drug targets a receptor that is known to modulate pain and could be important for therapies as far reaching as mood disorders.

"Most people don't find this class of drugs very pleasurable," Hooker said. "So perhaps the main draw or reason for its appeal relates to the rapid onset and short duration of its effects, which are incredibly unique. The kinetics are often as important as the abused drug itself."

The Brookhaven team plans to conduct further studies related to salvia's abuse potential. The scientists also hope to develop radioactive tracers that can better probe the brain receptors to which salvia binds. Such studies could possibly lead to therapies for chronic pain and mood disorders.

This research was funded by the Office of Biological and Environmental Research within DOE's Office of Science. DOE has a long-standing interest in research on brain chemistry gained through brain-imaging studies. Brain-imaging techniques such as PET are a direct outgrowth of DOE's support of basic physics and chemistry research.

All research involving laboratory animals at Brookhaven National Laboratory is conducted under the jurisdiction of the Lab's Institutional Animal Care and Use Committee in compliance with the Public Heath Service (PHS) Policy on Humane Care and Use of Laboratory Animals, the U.S. Department of Agriculture's Animal Welfare Act, and the National Academy of Sciences' Guide for the Care and Use of Laboratory Animals. This research has enhanced understanding of a wide array of human medical conditions including cancer, drug addiction, Alzheimer's and Parkinson's diseases, and normal aging and has led to the development of several promising treatment strategies.

Kendra Snyder | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>