Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First atomic-level look at a protein that causes brain disease

24.04.2008
For the first time, researchers have peered deeply at the atomic level into the protein that causes hereditary cerebral amyloid angiopathy (CAA) -- a disease thought to cause stroke and dementia.

The study pinpointed a tiny portion of the protein molecule that is key to the formation of plaques in blood vessels in the brain.

Ohio State University chemist Christopher Jaroniec and his colleagues report their results this week in the online edition of the Proceedings of the National Academy of Sciences.

Researchers worldwide are working to understand how certain kinds of proteins, called prions, cause degenerative brain diseases such as CAA. More common prion diseases include bovine spongiform encephalopathy (mad cow disease), and Creutzfeldt-Jakob disease in humans. All are incurable and fatal.

Jaroniec understands that any discovery related to prions could raise people’s hopes for a cure, but he emphasized that his study is only a first step towards understanding the structure of the prion for CAA.

“This is a very basic study of the structure of the protein, and hopefully it will give other researchers the information they need to perform further studies, and improve our understanding of CAA,” he said.

His team partnered with biochemists from Case Western Reserve University, who took a fragment of the human prion protein for CAA and tagged it with chemical markers.

Jaroniec explained that, while the prion protein used in the study is associated with the development of hereditary CAA, it is not infectious.

After the researchers tagged the molecule, they created the right chemical conditions for it to fold into macromolecules called amyloid fibrils.

Researchers know that in the body, these fibrils form plaques that lodge in blood vessel walls in the brain. But nobody has been able to closely examine the molecular structure of CAA fibrils until now.

“These fibrils are very large and complex, and so traditional biochemical techniques won’t reveal their structure in detail,” Jaroniec said.

The assistant professor of chemistry at Ohio State is an expert in a technique that can reveal the structure of such large molecules: solid-state nuclear magnetic resonance (NMR) spectroscopy.

NMR works by tuning into the radio waves emitted by atoms within materials. Every atom emits radio waves at a particular frequency, depending on the types of atoms that surround it.

The NMR technique the chemists used, called “magic angle spinning,” involves spinning materials at a certain angle with respect to the NMR's magnetic field in order to remove radio interference among the atoms. It offers researchers a clear view of which atoms make up a particular molecule, and how those atoms are arranged.

So after the researchers let the prion proteins fold into amyloid fibrils, they used magic angle spinning NMR to study the fibrils’ structure.

They searched the NMR signals for the chemical tags that had been planted in the prions. In that way, they were able to determine what parts of the original prion protein were contained within the fibrils.

They found, to their surprise, that some 80 percent of the original prion protein molecule was not present in the fibrils. The fibrils consisted exclusively of the remaining 20 percent -- approximately 29 amino acids, of which two appear to be especially critical to the structure of the molecule.

Other studies have suggested that these two amino acids, numbered 138 and 139, were key to the formation of the CAA fibrils, Jaroniec said. But this study is the first to confirm their importance by studying them at the atomic level.

The researchers are continuing this work, and plan to examine the structure of the fibrils in more detail, as well as other strains of the CAA prion protein.

Jaroniec’s partners on this project included Jonathan Helmus and Philippe Naudaud, both doctoral students at Ohio State, and their collaborators at Case Western.

This research was funded by Ohio State University and the National Institutes of Health.

Christopher Jaroniec | EurekAlert!
Further information:
http://www.osu.edu

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>