Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research identifies first method for testing, assessing drug treatments for Chagas' disease

22.04.2008
Chagas’ disease is a tropical parasitic sickness that currently affects more than 16 million people, with a staggering 100 million at risk, largely in the tropical areas of South and Central America. And yet the main drug used to treat the disease is highly toxic and causes serious side effects.

Now, new research just published by scientists at the University of Georgia has identified for the first time a sensitive method for testing and assessing the efficacy of treatments for Chagas’ disease. The study could lead to new treatments for long-term sufferers of a disease that can be fatal.

“It is the first time we’ve been able to identify a set of measurements to determine whether or not a drug for Chagas actually works,” said Rick Tarleton, distinguished research professor of cellular biology and a faculty member at UGA’s Center for Tropical and Emerging Global Diseases.

The research was published today in the online edition of the journal Nature Medicine. Co-authors, also from the University of Georgia, are postdoctoral associate Juan Bustamante and master’s degree student Lisa Bixby.

The research presents the first and only evidence that the current drug therapies for Chagas’ disease can actually completely cure the infection. Still, current treatments have potentially severe side effects and are thought to be effective in less than 50 percent of those treated. More important, the model the team developed can be used for the development of better drugs against Trypanosoma cruzi, the parasite that causes the disease.

“We also found that the immunological markers of cure in this system, which we developed in mice, provide a means to monitor drug treatment efficacy in humans, something that has been the biggest impediment to developing new drugs,” said Tarleton.

There’s a fourth finding more important to the big picture of immunology, however. This study shows that chronic infections do not by default exhaust the immune system.

“Current dogma on chronic infections is that constant stimulation of the immune system eventually wears it out, which is one of the problems in treating such disorders as HIV/AIDS,” said Tarleton. “This study shows that one can have an infection for more than a year, but, when cured, the immune system develops a stable, protective memory.”

This idea of “memory” is at the heart of the study, and it involves T-cells, specifically one kind called cytotoxic or “killer” T-cells, which are blood-borne white blood cells that destroy T. cruzi-infected cells in the case of Chagas’ disease and virally infected and tumor cells in other cases. Tarleton and his colleagues documented the development of stable killer T-cell “memory” following drug-induced cure of a chronic infection. In other words, when the body is cleared of parasites, the killer T-cells, which may have been “exhausted” by battling the persistent infection, bounce back and recall how to do their job.

The implications of the study could be considerable, Tarleton said. The T. cruzi parasite is passed to humans from the bite of blood-sucking assassin bugs, which go by many names, including “kissing bugs.” The infection can also be acquired through contaminated blood transfusions and by eating food contaminated with parasites.

In its first stages, the disease often causes no more than a local swelling at the point of the bite. This acute phase often passes, but the malady, if untreated, can then enter a chronic phase that can last for decades and cause heart disease and intestinal disorders. In many cases, Chagas’, named for the Brazilian scientist who first described it nearly a century ago, is fatal.

While several hundred thousand people in the United States may have the disease, these are largely immigrants from Latin American countries. The disease, however, is a major public health issue in all of South America and kills as many as 50,000 people each year, according to some estimates, making it the most significant parasitic disease of the Americas, Tarleton said.

Kim Osborne | EurekAlert!
Further information:
http://www.uga.edu

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

Im Focus: NYUAD astrophysicist investigates the possibility of life below the surface of Mars

  • A rover expected to explore below the surface of Mars in 2022 has the potential to provide more insights
  • The findings published in Scientific Reports, Springer Nature suggests the presence of traces of water on Mars, raising the question of the possibility of a life-supporting environment

Although no life has been detected on the Martian surface, a new study from astrophysicist and research scientist at the Center for Space Science at NYU Abu...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Molecular Forces: The Surprising Stretching Behaviour of DNA

05.08.2020 | Life Sciences

Carbon monoxide improves endurance performance

05.08.2020 | Health and Medicine

How tumor cells evade the immune defense

05.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>