Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing Throws Targeted Species Off Balance

18.04.2008
Fishing activities can provoke volatile fluctuations in the populations they target, but it's not often clear why. A new study published in the journal Nature by scientists at Scripps Institution of Oceanography at UC San Diego and colleagues has identified the general underlying mechanism.

Research led at Scripps with a distinguished team of government and international experts (including two chief scientific advisors to the United Kingdom) demonstrates that fishing can throw targeted fish populations off kilter.

Fishing can alter the "age pyramid" by lopping off the few large, older fish that make up the top of the pyramid, leaving a broad base of faster-growing small younglings. The team found that this rapidly growing and transitory base is dynamically unstable-a finding having profound implications for the ecosystem and the fishing industries built upon it.

This schematic outlines variability on exploited and unexploited.
"The data show that fished species appear to be significantly more nonlinear and less stable than unfished species," said Professor George Sugihara of Scripps. "We think the mechanism involves systematic alteration of the demographic parameters-and especially increases in growth rates that magnify destabilization in many ways-which can happen as fishing truncates the age structure."

Imagine a container of water with a 500-pound fish. With food, it grows a little bigger. Without food it gets a bit smaller. Imagine the same container with 500 one-pound fish. They eat, reproduce and the resulting thousands of fish boom, quickly outstripping the resources and the population crashes. These many smaller fish-with the same initial "biomass" as the larger fish-can't average out the environmental fluctuations, and in fact amplify them through higher turnover rates that promote boom and bust cycles.

The study that included academic and government scientists from Alaska, Asia and Great Britain is based on data from the California Cooperative Oceanic Fisheries Investigations (CalCOFI), a program based at Scripps that has monitored fish and oceanographic activities of the California Current for more than 50 years. To arrive at their results, the researchers compared the CalCOFI records of larvae, a key indicator of adult populations, of both fished and non-fished species in the California Current.

The schematic outlines variability on exploited and unexploited.Fishing typically extracts the older, larger members of a targeted species and fishing regulations often impose minimum size limits to protect the smaller, younger fishes.

"That type of regulation, which we see in many sport fisheries, is exactly wrong," said Sugihara. "It's not the young ones that should be thrown back, but the larger, older fish that should be spared. Not only do the older fish provide stability and capacitance to the population, they provide more and better quality offspring."

Thus the danger, according to Sugihara, is that current policies that manage according to current biomass targets (without significant forecast skill) while ignoring fish size pose risks that can further destabilize the population. This instability can in principle propagate systemically to the whole ecosystem, much like a stock market crash or a domino effect, and magnify risk for the fishing industry itself as well as those of ecologically related fisheries.

This is especially true when trying to rebuild fish stocks, Sugihara says.

"This may be the most important implication of this work, as we attempt to rehabilitate fisheries," said Sugihara. "Regulations based solely on biomass harvest targets are incomplete. They must also account for age-size structure in the populations," he said. "Current policies and industry pressures that encourage lifting bans on fishing when biomass is rehabilitated-but where maximum age and size are not-contain risk."

This is currently the case with Atlantic swordfish, for which industry pressures to resume fishing are based on the restoration of historic biomass levels, even though the swordfish are clearly undersized.

"In the extreme case, the danger of such unstable dynamics for certain populations for management is that harvest targets may lag the population, potentially making things worse," said Sugihara. "A high harvest target may be set after an especially abundant period when the population may be poised to decline on it's own. Likewise future abundant periods may represent missed opportunities, despite current low abundances. As senior officials of the Canadian Department of Fisheries and Oceans have said, 'we are often a year behind in our stock projections.'"

Sugihara cautioned that nonlinearity is not unique to fished species. Nonequilibrium overshooting and undershooting occurs in unexploited stocks, but to a lower extent. Therefore, classical single-species population models that require equilibrium are unlikely to be very successful in stock forecasts, except perhaps in the very short term.

"Other methods that do not rely on these assumptions may be more promising," suggests Christian Anderson, paper co-author.

In addition to Sugihara and Anderson, the study included Scripps Oceanography Chih-hao Hsieh (now a professor at National Taiwan University); Stuart Sandin of Scripps; Roger Hewitt of the National Marine Fisheries Service, Southwest Fisheries Science Center; Anne Hollowed of the National Marine Fisheries Service, Alaska Fisheries Science Center; Sir John Beddington of Imperial College London (current Chief Science Advisor to the United Kingdom) and Lord Robert May of Oxford (a former Chief Scientific Advisor to the UK).

The research was supported by NOAA Fisheries and the Environment program, The MacQuown Chair of Natural History, The Deutsche Bank - Jameson Complexity Studies Fund, the Sugihara Family Trust and the Kyoto University grant for Biodiversity Research of the 21st Century.

Mario Aguilera | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>