Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to ancestral origin of placenta emerge in Stanford study

15.04.2008
Researchers at the Stanford University School of Medicine have uncovered the first clues about the ancient origins of a mother's intricate lifeline to her unborn baby, the placenta, which delivers oxygen and nutrients critical to the baby's health.

The evidence suggests the placenta of humans and other mammals evolved from the much simpler tissue that attached to the inside of eggshells and enabled the embryos of our distant ancestors, the birds and reptiles, to get oxygen.

"The placenta is this amazing, complex structure and it's unique to mammals, but we've had no idea what its evolutionary origins are," said Julie Baker, PhD, assistant professor of genetics. Baker is senior author of the study, which will be published in the May issue of Genome Research.

The placenta grows inside the mother's uterus and serves as a way of exchanging gas and nutrients between mother and fetus; it is expelled from the mother's body after the birth of a baby. It is the only organ to develop in adulthood and is the only one with a defined end date, Baker said, making the placenta of interest to people curious about how tissues and organs develop.

Beyond being a biological curiosity, the placenta also plays a role in the health of both the mother and the baby. Some recent research also suggests that the placenta could be a key barrier in preventing or allowing molecules to pass to the unborn baby that influence the baby's disease risk well into adulthood.

"The placenta seems to be critical for fetal health and maternal heath," Baker said. Despite its major impact, almost nothing was known about how the placenta evolved or how it functions.

Baker and Kirstin Knox, graduate student and the study's first author, began addressing the question of the placenta's evolution by determining which genes are active in cells of the placenta throughout pregnancy in mice.

They found that the placenta develops in two distinct stages. In the first stage, which runs from the beginning of pregnancy through mid-gestation, the placental cells primarily activate genes that mammals have in common with birds and reptiles. This suggests that the placenta initially evolved through repurposing genes the early mammals inherited from their immediate ancestors when they arose more than 120 million years ago.

In the second stage, cells of the mammalian placenta switch to a new wave of species-specific genes. Mice activate newly evolved mouse genes and humans activate human genes.

It makes sense that each animal would need a different set of genes, Baker said. "A pregnant orca has different needs than a mouse and so they had to come up with different hormonal solutions to solve their problems," she said. For example, an elephant's placenta nourishes a single animal for 660 days. A pregnant mouse gestates an average of 12 offspring for 20 days. Clearly, those two pregnancies would require very different placentas.

Baker said these findings are particularly interesting given that cloned mice are at high risk of dying soon after the placenta's genetic transition takes place. "There's obviously a huge regulatory change that takes place," she said. What's surprising is that despite the dramatic shift taking place in the placenta, the tissue doesn't change in appearance.

Understanding the placenta's origins and function could prove useful. Previous studies suggest the placenta may contribute to triggering the onset of maternal labor, and is suspected to be involved in a maternal condition called pre-eclampsia, which is a leading cause of premature births.

Baker intends to follow up on this work by collaborating with Theo Palmer, PhD, associate professor of neurosurgery; Gill Bejerano, PhD, assistant professor of developmental biology, and Anna Penn, MD, PhD, assistant professor of pediatrics. Together, the group hopes to learn how the placenta protects the growing brain of the unborn baby, a protection that seems to extend into adulthood.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

Im Focus: Nanorobots propel through the eye

Scientists developed specially coated nanometer-sized vehicles that can be actively moved through dense tissue like the vitreous of the eye. So far, the transport of nano-vehicles has only been demonstrated in model systems or biological fluids, but not in real tissue. The work was published in the journal Science Advances and constitutes one step further towards nanorobots becoming minimally-invasive tools for precisely delivering medicine to where it is needed.

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

In focus: Peptides, the “little brothers and sisters” of proteins

12.11.2018 | Life Sciences

Materials scientist creates fabric alternative to batteries for wearable devices

12.11.2018 | Materials Sciences

A two-atom quantum duet

12.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>