Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clues to ancestral origin of placenta emerge in Stanford study

15.04.2008
Researchers at the Stanford University School of Medicine have uncovered the first clues about the ancient origins of a mother's intricate lifeline to her unborn baby, the placenta, which delivers oxygen and nutrients critical to the baby's health.

The evidence suggests the placenta of humans and other mammals evolved from the much simpler tissue that attached to the inside of eggshells and enabled the embryos of our distant ancestors, the birds and reptiles, to get oxygen.

"The placenta is this amazing, complex structure and it's unique to mammals, but we've had no idea what its evolutionary origins are," said Julie Baker, PhD, assistant professor of genetics. Baker is senior author of the study, which will be published in the May issue of Genome Research.

The placenta grows inside the mother's uterus and serves as a way of exchanging gas and nutrients between mother and fetus; it is expelled from the mother's body after the birth of a baby. It is the only organ to develop in adulthood and is the only one with a defined end date, Baker said, making the placenta of interest to people curious about how tissues and organs develop.

Beyond being a biological curiosity, the placenta also plays a role in the health of both the mother and the baby. Some recent research also suggests that the placenta could be a key barrier in preventing or allowing molecules to pass to the unborn baby that influence the baby's disease risk well into adulthood.

"The placenta seems to be critical for fetal health and maternal heath," Baker said. Despite its major impact, almost nothing was known about how the placenta evolved or how it functions.

Baker and Kirstin Knox, graduate student and the study's first author, began addressing the question of the placenta's evolution by determining which genes are active in cells of the placenta throughout pregnancy in mice.

They found that the placenta develops in two distinct stages. In the first stage, which runs from the beginning of pregnancy through mid-gestation, the placental cells primarily activate genes that mammals have in common with birds and reptiles. This suggests that the placenta initially evolved through repurposing genes the early mammals inherited from their immediate ancestors when they arose more than 120 million years ago.

In the second stage, cells of the mammalian placenta switch to a new wave of species-specific genes. Mice activate newly evolved mouse genes and humans activate human genes.

It makes sense that each animal would need a different set of genes, Baker said. "A pregnant orca has different needs than a mouse and so they had to come up with different hormonal solutions to solve their problems," she said. For example, an elephant's placenta nourishes a single animal for 660 days. A pregnant mouse gestates an average of 12 offspring for 20 days. Clearly, those two pregnancies would require very different placentas.

Baker said these findings are particularly interesting given that cloned mice are at high risk of dying soon after the placenta's genetic transition takes place. "There's obviously a huge regulatory change that takes place," she said. What's surprising is that despite the dramatic shift taking place in the placenta, the tissue doesn't change in appearance.

Understanding the placenta's origins and function could prove useful. Previous studies suggest the placenta may contribute to triggering the onset of maternal labor, and is suspected to be involved in a maternal condition called pre-eclampsia, which is a leading cause of premature births.

Baker intends to follow up on this work by collaborating with Theo Palmer, PhD, associate professor of neurosurgery; Gill Bejerano, PhD, assistant professor of developmental biology, and Anna Penn, MD, PhD, assistant professor of pediatrics. Together, the group hopes to learn how the placenta protects the growing brain of the unborn baby, a protection that seems to extend into adulthood.

Mitzi Baker | EurekAlert!
Further information:
http://mednews.stanford.edu

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>