Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award-winning study says back pain may be in your genes

09.04.2008
What do you learn by looking at the spines of hundreds of Finnish twins? If you are the international team of researchers behind the Twin Spine Study, you find compelling proof that back pain problems may be more a matter of genetics than physical strain.

The findings of the Twin Spine Study, an ongoing research program started in 1991, have led to a dramatic paradigm shift in the way disc degeneration is understood. Last month a paper presenting an overview of the Twin Spine Study’s multidisciplinary investigation into the root causes of disc degeneration received a Kappa Delta Award from the American Academy of Orthopaedic Surgeons, arguably the most prestigious annual award in musculoskeletal research.

“In the past, the factors most commonly suspected of accelerating degenerative changes in the discs were various occupational physical loading conditions, such as handling of heavy materials, postural loading and vehicular vibration,” said lead researcher Michele Crites-Battié of the University of Alberta’s Faculty of Rehabilitation Medicine.

Drawing on information from 600 participants in the population-based Finnish Twin Cohort—147 pairs of identical and 153 pairs of fraternal male twins—the Twin Spine Study has turned the dominant “injury model” approach to disc degeneration on its head. Researchers from Canada, Finland, the United States and the United Kingdom compared identical twin siblings who differed greatly in their exposure to a suspected risk factor for back problems; for example, one of the twins had a sedentary job while the other had heavy occupational physical demands, or one routinely engaged in occupational driving while the other did not. The studies yielded startling results, suggesting that genetics play a much larger role in disc degeneration than previously thought.

Despite extraordinary differences between identical twin siblings in occupational and leisure-time physical loading conditions throughout adulthood, surprisingly little effect on disc degeneration was observed. The findings indicated that while physical loading—handling heavy loads, bending, twisting and static work in awkward postures—appears to influence disc degeneration, the effects are very modest. During the course of the exposure-discordant twin studies, said Crites-Battié, the observation that struck anyone who viewed the twin sibling images side-by-side was the strong resemblance in disc degeneration, not only in the degree of degeneration, but also in the types of findings and spinal levels involved.

The Twin Spine Study is far from over: having found evidence that genetics may play an overlooked role in disc degeneration, the team of North American and European is now working to identify the specific genes and biological mechanisms influencing disc degeneration and back pain problems; understanding how degeneration progresses over time; and differentiating normal, inconsequential changes from degenerative changes that lead to pain.

“This advance in the understanding of disc degeneration provides a foundation from which to develop new hypotheses and more fruitful research that may help shed light on one of the most common and costly musculoskeletal conditions facing the developed countries of the world,” said Crites-Battié.

Kris Connor | alfa
Further information:
http://www.ualberta.ca

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>