Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award-winning study says back pain may be in your genes

09.04.2008
What do you learn by looking at the spines of hundreds of Finnish twins? If you are the international team of researchers behind the Twin Spine Study, you find compelling proof that back pain problems may be more a matter of genetics than physical strain.

The findings of the Twin Spine Study, an ongoing research program started in 1991, have led to a dramatic paradigm shift in the way disc degeneration is understood. Last month a paper presenting an overview of the Twin Spine Study’s multidisciplinary investigation into the root causes of disc degeneration received a Kappa Delta Award from the American Academy of Orthopaedic Surgeons, arguably the most prestigious annual award in musculoskeletal research.

“In the past, the factors most commonly suspected of accelerating degenerative changes in the discs were various occupational physical loading conditions, such as handling of heavy materials, postural loading and vehicular vibration,” said lead researcher Michele Crites-Battié of the University of Alberta’s Faculty of Rehabilitation Medicine.

Drawing on information from 600 participants in the population-based Finnish Twin Cohort—147 pairs of identical and 153 pairs of fraternal male twins—the Twin Spine Study has turned the dominant “injury model” approach to disc degeneration on its head. Researchers from Canada, Finland, the United States and the United Kingdom compared identical twin siblings who differed greatly in their exposure to a suspected risk factor for back problems; for example, one of the twins had a sedentary job while the other had heavy occupational physical demands, or one routinely engaged in occupational driving while the other did not. The studies yielded startling results, suggesting that genetics play a much larger role in disc degeneration than previously thought.

Despite extraordinary differences between identical twin siblings in occupational and leisure-time physical loading conditions throughout adulthood, surprisingly little effect on disc degeneration was observed. The findings indicated that while physical loading—handling heavy loads, bending, twisting and static work in awkward postures—appears to influence disc degeneration, the effects are very modest. During the course of the exposure-discordant twin studies, said Crites-Battié, the observation that struck anyone who viewed the twin sibling images side-by-side was the strong resemblance in disc degeneration, not only in the degree of degeneration, but also in the types of findings and spinal levels involved.

The Twin Spine Study is far from over: having found evidence that genetics may play an overlooked role in disc degeneration, the team of North American and European is now working to identify the specific genes and biological mechanisms influencing disc degeneration and back pain problems; understanding how degeneration progresses over time; and differentiating normal, inconsequential changes from degenerative changes that lead to pain.

“This advance in the understanding of disc degeneration provides a foundation from which to develop new hypotheses and more fruitful research that may help shed light on one of the most common and costly musculoskeletal conditions facing the developed countries of the world,” said Crites-Battié.

Kris Connor | alfa
Further information:
http://www.ualberta.ca

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>