Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genomic profiling of breast tumors might determine prognosis, treatment

03.04.2008
Combining a breast cancer patient's clinical characteristics with a genomic profile of her tumor may provide important information for predicting an individual patient’s prognosis and accurately guiding treatment options, according to a new study led by researchers in the Duke Comprehensive Cancer Center (DCCC) and Duke’s Institute for Genome Sciences & Policy (IGSP).

“Our goal is to treat patients on a more individualized basis, matching the right drugs with the right patients,” said Anil Potti, M.D., an oncologist and researcher in the DCCC and the IGSP. “The combination of these two methods, one of which uses the clinical description of patient’s breast cancer and the other which looks at gene expression at a molecular level in a patient’s tumor, may allow us to do that with unprecedented accuracy. This represents a robust approach to personalizing treatment strategies in patients suffering from breast cancer.”

The findings appear in the April 2, 2008 issue of the Journal of the American Medical Association. The study was funded by the Jimmy V Foundation, the American Cancer Society and the Emilene Brown Research Fund.

Researchers looked at almost 1000 breast tumor samples, and corresponding patient data, and applied existing technology -- a computerized system called Adjuvant! -- to assess clinical characteristics and make predictions of recurrence based on them. By then comparing gene expression in these tumor samples, the researchers were able to see specific genomic patterns among patients with aggressive cancers, and those whose cancers were less likely to recur.

“We knew from previous studies that Adjuvant! tends to overestimate disease recurrence in younger patients,” Potti said. “We hypothesized that genomic profiling could be a complementary tool that would more precisely define clinical outcomes, and could also help to aid in selecting the right drug for a given patient.”

By using the clinical and genomic tools together and cross-comparing data, the researchers were able to not only say that a particular patient has a “high” risk of recurrence, but they could be more specific; for instance, they could predict that a particular patient was 90 percent likely to see her cancer recur, Potti said.

“This is important because with this data, we might decide to treat this person more aggressively even than someone else who is considered ‘high risk’ but may have only a 60 percent likelihood of recurrence,” he said. “Moreover, we can identify specific options for chemotherapy in such patients as well, by correlating gene expression in a tumor with its response, or non-response, to certain chemotherapies.”

The findings have already been put into practice as part of several clinical trials at Duke for cancer patients. A tumor’s genomic make-up is being used to dictate the choice between a traditional chemotherapy regimen and an alternate drug that is more likely to benefit an individual patient. One such trial involving almost 300 patients with breast cancer is expected to start at Duke this spring.

Lauren Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Liquifying a rocky exoplanet

A hot, molten Earth would be around 5% larger than its solid counterpart. This is the result of a study led by researchers at the University of Bern. The difference between molten and solid rocky planets is important for the search of Earth-like worlds beyond our Solar System and the understanding of Earth itself.

Rocky exoplanets that are around Earth-size are comparatively small, which makes them incredibly difficult to detect and characterise using telescopes. What...

Im Focus: Axion particle spotted in solid-state crystal

Scientists at the Max Planck Institute for Chemical Physics of Solids in Dresden, Princeton University, the University of Illinois at Urbana-Champaign, and the University of the Chinese Academy of Sciences have spotted a famously elusive particle: The axion – first predicted 42 years ago as an elementary particle in extensions of the standard model of particle physics.

The team found signatures of axion particles composed of Weyl-type electrons (Weyl fermions) in the correlated Weyl semimetal (TaSe₄)₂I. At room temperature,...

Im Focus: A cosmic pretzel

Twin baby stars grow amongst a twisting network of gas and dust

The two baby stars were found in the [BHB2007] 11 system - the youngest member of a small stellar cluster in the Barnard 59 dark nebula, which is part of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Electrochemistry to benefit photonics: Nanotubes can control laser pulses

11.10.2019 | Physics and Astronomy

Biologically inspired skin improves robots' sensory abilities (Video)

11.10.2019 | Power and Electrical Engineering

New electrolyte stops rapid performance decline of next-generation lithium battery

11.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>