Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are You What You Eat? New Study Of Body Weight Change Says Maybe Not.

28.03.2008
If identical twins eat and exercise equally, must they have the same body weight?

By analyzing the fundamental equations of body weight change, NIH investigators Carson Chow and Kevin Hall find that identical twins with identical lifestyles can have different body weights and different amounts of body fat.

The study, published March 28th in the open-access journal PLoS Computational Biology, uses a branch of mathematics called dynamical systems theory to demonstrate that a class of model equations has an infinite number of body weight solutions, even if the food intake and energy expenditure rates are identical.

However, the work also shows that another class of models directly refutes this, predicting that food intake and energy expenditure rates uniquely determine body weight. Existing data are insufficient to tell which is closer to reality, since both models can make the same predictions for a given alteration of food intake or energy expenditure.

Given the ongoing obesity epidemic, Drs. Chow and Hall are interested in what factors determine human body weight and its stability. Of particular importance is whether a treatment for obesity would have to be administered repeatedly over a lifetime or could be given only until a target body weight is reached.

As a particular example, the study considers whether weight lost from a liposuction procedure is permanent. For the class of equations with an infinite number of body weight solutions, fat removal through liposuction could lead to permanent results. However, the opposing models predict that the body would eventually return to its original weight.

Chow and Hall note that neither class of models accounts for the many variables affecting how much a person tends to eat, an important factor determining bodyweight. Nevertheless, for any food intake rate this latest research suggests that an individual may have an infinite number of possible body weights. The study outlines the mathematical conditions underlying this possibility and suggests how future experiments could determine if it is true.

Andrew Hyde | alfa
Further information:
http://www.ploscompbiol.org/doi/pcbi.1000045

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>