Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers identify language feature unique to human brain

25.03.2008
Yerkes researchers identify language feature unique to human brain

The center's extensive imaging capabilities were critical to this evolutionary language finding.

Researchers at the Yerkes National Primate Research Center, Emory University, have identified a language feature unique to the human brain that is shedding light on how human language evolved. The study marks the first use of diffusion tensor imaging (DTI), a non-invasive imaging technique, to compare human brain structures to those of chimpanzees, our closest living relative. The study will be published in the online version of Nature Neuroscience.

To explore the evolution of human language, Yerkes researcher James Rilling, PhD, and his colleagues studied the arcuate fasciculus, a pathway that connects brain regions known to be involved in human language, such as Broca's area in the frontal lobe and Wernicke's area in the temporal lobe. Using DTI, researchers compared the size and trajectory of the arcuate fasciculus in humans, rhesus macaques and chimpanzees.

According to Rilling, "The human arcuate fasiculus differed from that of the rhesus macaques and chimpanzees in having a much larger and more widespread projection to areas in the middle temporal lobe, outside of the classical Wernicke's area. We know from previous functional imaging studies that the middle temporal lobe is involved with analyzing the meanings of words. In humans, it seems the brain not only evolved larger language regions but also a network of fibers to connect those regions, which supports humans' superior language capabilities."

"This is a landmark," said Yerkes researcher Todd Preuss, PhD, one of the study's coauthors. "Until DTI was developed, scientists lacked non-invasive methods to study brain connectivity directly. We couldn't study the connections of the human brain, nor determine how humans resemble or differ from other animals. DTI now makes it possible to understand how evolution changed the wiring of the human brain to enable us to think, act and speak like humans."

Emily Rios | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>