Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yerkes researchers identify language feature unique to human brain

25.03.2008
Yerkes researchers identify language feature unique to human brain

The center's extensive imaging capabilities were critical to this evolutionary language finding.

Researchers at the Yerkes National Primate Research Center, Emory University, have identified a language feature unique to the human brain that is shedding light on how human language evolved. The study marks the first use of diffusion tensor imaging (DTI), a non-invasive imaging technique, to compare human brain structures to those of chimpanzees, our closest living relative. The study will be published in the online version of Nature Neuroscience.

To explore the evolution of human language, Yerkes researcher James Rilling, PhD, and his colleagues studied the arcuate fasciculus, a pathway that connects brain regions known to be involved in human language, such as Broca's area in the frontal lobe and Wernicke's area in the temporal lobe. Using DTI, researchers compared the size and trajectory of the arcuate fasciculus in humans, rhesus macaques and chimpanzees.

According to Rilling, "The human arcuate fasiculus differed from that of the rhesus macaques and chimpanzees in having a much larger and more widespread projection to areas in the middle temporal lobe, outside of the classical Wernicke's area. We know from previous functional imaging studies that the middle temporal lobe is involved with analyzing the meanings of words. In humans, it seems the brain not only evolved larger language regions but also a network of fibers to connect those regions, which supports humans' superior language capabilities."

"This is a landmark," said Yerkes researcher Todd Preuss, PhD, one of the study's coauthors. "Until DTI was developed, scientists lacked non-invasive methods to study brain connectivity directly. We couldn't study the connections of the human brain, nor determine how humans resemble or differ from other animals. DTI now makes it possible to understand how evolution changed the wiring of the human brain to enable us to think, act and speak like humans."

Emily Rios | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>