Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

US rush to produce corn-based ethanol will worsen 'dead zone' in Gulf of Mexico

11.03.2008
The U.S. government’s rush to produce corn-based ethanol as a fuel alternative will worsen pollution in the Gulf of Mexico, increasing a “Dead Zone” that kills fish and aquatic life, according to University of British Columbia researcher Simon Donner.

In the first study of its kind, Donner and Chris Kucharik of the University of Wisconsin quantify the effect of biofuel production on the problem of nutrient pollution in a waterway. Their findings will appear in the March 10 edition of the Proceedings of the National Journal of Sciences.

The researchers looked at the estimated land and fertilizer required to meet proposed corn-based ethanol production goals. Recently, the U.S. Senate announced its energy policy aims of generating 36 billion gallons annually of ethanol by the year 2022, of which 15 billion gallons can be produced from corn starch. The corn-ethanol goal represents more than three times than triple the production in 2006.

“This rush to expand corn production is a disaster for the Gulf of Mexico,” says Donner, an assistant professor in the Dept. of Geography. “The U.S. energy policy will make it virtually impossible to solve the problem of the Dead Zone.”

Nitrogen and phosphorus from agricultural fertilizer have been found to promote excess growth of algae in water bodies – a problem that’s common across North America and in many areas of the world.

In some cases, decomposition of algae consumes much of the oxygen in the water. Fertilizer applied to cornfields in the central U.S. – including states such as Illinois, Iowa, Nebraska and Wisconsin – is the primary source of nitrogen pollution in the Mississippi River system, which drains into the Gulf of Mexico.

Each summer, the export of nitrogen creates a large “Dead Zone” in the Gulf of Mexico, a region of oxygen-deprived waters that are unable to support aquatic life. In recent years, it has reached over 20,000 km2 in size, which is equivalent to the area of New Jersey.

Donner and Kucharik’s findings suggest that if the U.S. were to meet its proposed ethanol production goals, nitrogen loading by the Mississippi River to the Gulf of Mexico would increase by 10-19 per cent.

To arrive at this figure, Donner and Kucharik combined the agricultural land use scenarios with models of terrestrial and aquatic nitrogen cycling.

“The nitrogen levels in the Mississippi will be more than twice the recommendation for the Gulf,” says Donner. “It will overwhelm all the suggested mitigation options.”

The results of the study call into question the assumption that enough land exists to fulfill current feed crop demand and expand corn and other crop production for ethanol.

The study concludes that increasing ethanol production from U.S. croplands without endangering water quality and aquatic ecosystems will require a substantial reduction in meat consumption.

Lorraine Chan | EurekAlert!
Further information:
http://www.ubc.ca

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>