Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Head injuries result in widespread brain tissue loss one year later

04.03.2008
May provide important clue to why patients are left with behavioral handicaps

In a rare, large-scale study of traumatic brain injury (TBI) patients who span the full range of severity from mild to moderate and severe, Canadian researchers have found that the more severe the injury, the greater the loss of brain tissue, particularly white matter.

“This is an important finding as TBI is one of the most common forms of disability,” said Dr. Brian Levine, Senior Scientist at Baycrest’s Rotman Research Institute and lead author of the study which is published in the March 4, 2008 issue of Neurology, the medical journal of the American Academy of Neurology.

TBI causes both localized damage through bruises or bleeds, as well as more diffuse damage through disconnection of brain cells, which ultimately causes cell death. The localized damage is easier to detect with the naked eye than diffuse damage. Yet both kinds of damage contribute to difficulties with concentration, working memory, organizing and planning (vital skills for holding a job), and mood changes often experienced by people following TBI.

According to Dr. Levine, “It can be hard to determine why patients are so disabled, and this study offers a clue to the nature of the brain damage causing this disability.”

In the study, 69 TBI patients were recruited from Sunnybrook Health Sciences Centre, Canada’s largest trauma centre, one year after injury. Eighty percent of the patients sustained their injury from a motor vehicle accident. Injury severity was determined by the depth of coma or consciousness alteration at the time of the initial hospitalization. Some patients had minor injuries and were discharged immediately, whereas others had more severe injuries with extended loss of consciousness lasting weeks. Twelve healthy, non-injured participants were recruited as the comparison group.

Subjects’ brains were scanned with high resolution magnetic resonance imaging (MRI) which provides the most sensitive picture of volume changes in the brain. In addition to using an expert radiologist’s qualitative reading of the MRI scans, which is the standard approach used in hospitals and clinics, the researchers processed the images with a computer program that quantified volumes in 38 brain regions.

The computerized analysis revealed widespread brain tissue loss that was closely related to the severity of the TBI sustained one year earlier. “We were surprised at the extent of volume loss, which encompassed both frontal and posterior brain regions,” said Dr. Levine. Brain tissue loss was greatest in the white matter (containing axons which can be compared to telephone wire interconnectivity), but also involved grey matter (containing the cell bodies important for information processing).

Investigators were surprised to find that volume loss was widespread even in TBI patients who had no obvious lesions on their MRI scans. Even the mild TBI group contributed to the pattern of volumetric changes such that this group was reliably differentiated from the non-injured, healthy group.

“A significant blow to the head causing loss of consciousness can cause extensive reduction of brain tissue volume that may evade detection by traditional qualitative radiological examination,” Dr. Levine noted.

He is leading follow-up studies on the same group of TBI patients to examine more closely the significance of localized white and grey matter volume loss on behaviour.

Kelly Connelly | EurekAlert!
Further information:
http://www.baycrest.org

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>