Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Class size alone not enough to close academic achievement gap

03.03.2008
A Northwestern University study investigating the effects of class size on the achievement gap between high and low academic achievers suggests that high achievers benefit more from small classes than low achievers, especially at the kindergarten and first grade levels.

“While decreasing class size may increase achievement on average for all types of students, it does not appear to reduce the achievement gap within a class,” said Spyros Konstantopoulos, assistant professor at Northwestern’s School of Education and Social Policy.

Konstantopoulos’ study, which appears in the March issue of Elementary School Journal, questions commonly held assumptions about class size and the academic achievement gap -- one of the most debated and perplexing issues in education today.

The Northwestern professor worked with data from Project STAR, a landmark longitudinal study launched in 1985 by the State of Tennessee to determine whether small classes positively impacted the academic achievement of students.

Considered one of the most important investigations in education, STAR made it abundantly clear that on average small classes had a positive impact on the academic performance of all students.

For most school advocates, parents and policy makers, that finding was enough to call for smaller class size. However, Konstantopoulos found that that the children who already were high achievers were the primary beneficiaries of the extra attention smaller classes afforded.

“It is likely that high achievers are more engaged in learning opportunities and take advantage of the teaching practices that take place in smaller classes, or that they create opportunities for their own learning in smaller classes,” said Konstantoupoulos.

“Given that class size reduction is an intervention that benefits all students, it’s tempting to expect that it also will reduce the achievement gap,” he added. Previous research, however, has provided weak or no evidence that class reduction benefited lower-achieving students more than others. The Northwestern study underscores that research.

The Northwestern study findings suggest that small classes produce significantly higher variability in achievement than regular classes in kindergarten mathematics and in first grade reading. Overall the results indicate that class size reduction increases not only achievement for all students on average, but the variability in student achievement as well.

“It is unfortunate that data about classroom practices that could be useful in identifying ways of improving academic success for lower achieving students were not available in Project STAR,” Konstantopoulos said. “A new randomized experiment with the objective of collecting high-quality observational data in the classrooms would provide invaluable information about the effects of small classes.”

Wendy Leopold | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>