Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tropical winter habitat drives natal dispersal of young migratory birds

20.02.2008
A new study by scientists at the Migratory Bird Center at the Smithsonian’s National Zoo shows that the factors determining where birds settle and nest in the first breeding season depends on the habitat they used during their first winter in the tropics. The determining factor in where a bird settles for its first breeding season relative to its hatching site—also known as natal dispersal—was previously unknown.

By studying American redstarts, National Zoo scientists have shed light on the phenomenon that has important implications for rates of genetic differentiation. The study was published online in the Feb. 18 issue of the Proceedings of the National Academy of Sciences USA.

Scientists looked at two distinct redstart habitats in Jamaica—one, a lush, food-rich habitat, and the other, a dry and harsher habitat. The study showed that birds that spent their first winter in the lush habitat left earlier for spring migration and traveled relatively short distances to breed. Birds that first wintered in the harsher habitat left later on migration and traveled a longer distance to breed.

The difference in migration distance between birds in these habitats led to birds from the lush habitat dispersing south of their hatch site and birds from the dry, harsh habitat dispersing north of their natal site.

Studying natal dispersal in migratory birds has previously presented a challenge to scientists. It is difficult to track small animal species across long distances as opposed to larger animals that can be fit with satellite collars.

Scientists Colin Studds, a doctoral candidate in the Program in Behavior, Ecology, Evolution, and Systematics at the University of Maryland (College Park), and Peter Marra, an ecologist at the Migratory Bird Center, investigated this phenomenon.

They compared a chemical marker in the feathers of birds spending their first winter in Jamaica to the feathers they grew one year later after their first breeding season. This marker—a stable isotope of hydrogen—revealed the approximate latitude in North America where birds grew their feathers. Hydrogen isotopes vary predictably with latitude, and birds store the signature of their local area in their bodies through their insect-rich diets. By sampling redstart feathers in Jamaica, the researchers were able to piece together the hatching and breeding latitudes of birds they could not otherwise track for long distances.

Natal dispersal is thought to be the main process affecting genetic mixing of bird populations. This study is first to show that conditions in tropical winter areas can influence natal dispersal patterns. The findings underscore the importance of developing conservation projects that take into account the annual cycle of a migratory bird.

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Active droplets

21.02.2020 | Medical Engineering

Finding new clues to brain cancer treatment

21.02.2020 | Health and Medicine

Beyond the brim, Sombrero Galaxy's halo suggests turbulent past

21.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>