Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel mathematical model predicts new wave of drug-resistant HIV infections in San Francisco

20.02.2008
Paradoxically, rise of resistant strains has reduced epidemic's severity

A mathematical model shows that a new wave of drug-resistant HIV is rising among among men in San Francisco who have sex with men and that this trend will continue over the next few years, according to a new study from the UCLA AIDS Institute.

At the same time, the evolution of drug-resistant HIV may have actually reduced the severity of the city's epidemic, saving many men from becoming infected.

The model and its results were unveiled today by UCLA biomathematics professor Sally Blower, director of the Biomedical Modeling Center at the David Geffen School of Medicine at UCLA, during a session on drug-resistant diseases at the annual American Association for the Advancement of Science conference in Boston.

"Our amplification cascade model has been validated by our reconstructions and can now be used to design novel and effective health policies for controlling single-, dual- and triple-class resistant strains of HIV in both resource-rich and resource-constrained countries," said Blower, who is also a member of the UCLA AIDS Institute.

The model enabled the researchers to reconstruct the epidemic's past and predict its future by calculating the evolution of several classes of drug-resistant HIV strains in San Francisco.

The research relied on a novel multi-strain mathematical model called the Amplification Cascade Model to examine the rise between 1987 and 2007 of HIV strains resistant to the three major classes of drugs -- nucleosides (NRTIs), nonnucleosides (NNRTIs) and protease inhibitors (PIs). The model took into account three interacting processes -- transmitted, acquired and amplified resistance -- the last of which refers to amplification of drug-resistant strains in HIV-positive people due to the repeated use of multiple-treatment drug regimens.

The study tracked uninfected individuals; newly infected people in the primary stage of infection; chronically infected individuals who were not yet eligible for treatment; chronically infected people who remained untreated, though eligible for it; and patients under treatment.

Researchers found complex waves of rising and falling single-, dual- and triple-class drug-resistant HIV strains over 20 years, with more complex patterns continuing to evolve.

The model predicts that resistance to NRTIs will decline substantially and PI resistance will fall slightly through 2012, and that resistance to NNRTIs will rise over the next five years and then begin falling.

Although strains with dual- and triple-class resistance will be transmitted, they will be far less potent than wild-type HIV strains -- those strains that have not developed drug-resistant mutations and remain sensitive to all classes of drugs.

Most surprising of all, the evolution of drug-resistant HIV strains has substantially reduced the severity of the San Francisco AIDS epidemic because the strains that have emerged have become less infectious than the wild-type strains.

Enrique Rivero | EurekAlert!
Further information:
http://www.mednet.ucla.

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>