Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buck Research Focuses on Risk Factor for Parkinson’s Disease

20.02.2008
Study suggests preventive treatment may be useful for those who have high levels of particular enzyme that regulates nerve activity in the brain

A new study demonstrates that high levels of MAO-B, an enzyme that regulates nerve activity in the brain, cause Parkinson’s-like symptoms in mice genetically engineered to overexpress the protein. Furthermore, drugs currently used as an adjunct therapy for Parkinson’s in humans prevented the development of Parkinson’s symptoms in these same animals.

The findings, by scientists at the Buck Institute for Age Research, raise the possibility that humans could be tested to see if they have a risk factor for the progressive, incurable neurodegenerative disorder that affects 1.5 million Americans and receive preventive treatment. The study appears in the February 20 issue of the open-access, online journal, PLoS ONE.

Levels of measurable MAO-B vary 50-fold in humans and tend to increase with age. Several studies have suggested that increases in MAO-B contribute to the neurodegeneration associated with PD, but direct proof of a causative role for the enzyme has been lacking. The drug deprenyl, which inhibits MAO-B, is a longstanding therapy for Parkinson’s used together with drugs that boost the level of dopamine, an important neurotransmitter that is preferentially depleted in the disease. Clinical studies that suggest that deprenyl treatment alone does not impact mortality associated with Parkinson’s have cast doubt on the role of MAO-B in the disease itself. Buck faculty member Julie Andersen, PhD, who led the study says that may not be the case. “Those studies were targeted to patients who already had symptoms of Parkinson’s -- by the time Parkinson’s is symptomatically detectable, dopamine loss is usually at least 60%,” said Andersen. “Therefore the lack of effectiveness of MAO-B inhibition in these patients does not negate a role for MAO-B increase in disease development.” Andersen added, “We have demonstrated that elevations in MAO-B result in selective loss of neurons associated with Parkinson’s in a mouse model and that the severity of this loss is age-dependent.”

Tests to measure levels of MAO-B are not currently available to the general public, although enzyme levels are tracked in clinical trials. Andersen says MAO-B testing could be akin to current practices involving cholesterol, which is measured and monitored as a risk factor for cardiovascular disease. “However, it is important to note that Parkinson’s is a multi-factor disease,” said Andersen. “The fact that someone has high levels of MAO-B does not necessarily mean they are fated to develop Parkinson’s.”

Andersen said results of the study point to the need for an early diagnostic test for Parkinson’s. "Currently, by the time people are diagnosed with the disease they have already lost 60% of the neurotransmitter levels implicated in Parkinson’s; treatment with a drug like deprenyl would likely be most effective if taken before symptoms appear in order to halt disease progression."

The novel transgenic mouse line created for this study provides a new model for exploring molecular pathways involved in the initiation or early progression of several key features associated with Parkinson’s pathology including dopaminergic midbrain cell loss. The mouse line also allows for additional therapeutic drug testing.

Joining Andersen in the study were Jyothi K. Mallajosyula, Deepinder Kaur, Shankar J. Chinta, Subramanian Rajagopalan, Anand Rane, and David G. Nicholls of the Buck Institute, along with Dino DiMonte of the Parkinson’s Institute and Heather Macarthur of the Saint Louis University School of Medicine. The work was funded by the National Institutes of Health (R01 NS40057-04) and the National Parkinson’s Foundation.

The Buck Institute is an independent non-profit organization dedicated to extending the healthspan, the healthy years of each individual’s life. The National Institute of Aging designated the Buck a Nathan Shock Center of Excellence in the Biology of Aging, one of just five centers in the country. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer’s and Parkinson’s disease, cancer, stroke, and arthritis. Collaborative research at the Institute is supported by genomics, proteomics and bioinformatics technology.

Andrew Hyde | alfa
Further information:
http://www.buckinstitute.org
http://www.plos.org

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>