Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Buck Research Focuses on Risk Factor for Parkinson’s Disease

20.02.2008
Study suggests preventive treatment may be useful for those who have high levels of particular enzyme that regulates nerve activity in the brain

A new study demonstrates that high levels of MAO-B, an enzyme that regulates nerve activity in the brain, cause Parkinson’s-like symptoms in mice genetically engineered to overexpress the protein. Furthermore, drugs currently used as an adjunct therapy for Parkinson’s in humans prevented the development of Parkinson’s symptoms in these same animals.

The findings, by scientists at the Buck Institute for Age Research, raise the possibility that humans could be tested to see if they have a risk factor for the progressive, incurable neurodegenerative disorder that affects 1.5 million Americans and receive preventive treatment. The study appears in the February 20 issue of the open-access, online journal, PLoS ONE.

Levels of measurable MAO-B vary 50-fold in humans and tend to increase with age. Several studies have suggested that increases in MAO-B contribute to the neurodegeneration associated with PD, but direct proof of a causative role for the enzyme has been lacking. The drug deprenyl, which inhibits MAO-B, is a longstanding therapy for Parkinson’s used together with drugs that boost the level of dopamine, an important neurotransmitter that is preferentially depleted in the disease. Clinical studies that suggest that deprenyl treatment alone does not impact mortality associated with Parkinson’s have cast doubt on the role of MAO-B in the disease itself. Buck faculty member Julie Andersen, PhD, who led the study says that may not be the case. “Those studies were targeted to patients who already had symptoms of Parkinson’s -- by the time Parkinson’s is symptomatically detectable, dopamine loss is usually at least 60%,” said Andersen. “Therefore the lack of effectiveness of MAO-B inhibition in these patients does not negate a role for MAO-B increase in disease development.” Andersen added, “We have demonstrated that elevations in MAO-B result in selective loss of neurons associated with Parkinson’s in a mouse model and that the severity of this loss is age-dependent.”

Tests to measure levels of MAO-B are not currently available to the general public, although enzyme levels are tracked in clinical trials. Andersen says MAO-B testing could be akin to current practices involving cholesterol, which is measured and monitored as a risk factor for cardiovascular disease. “However, it is important to note that Parkinson’s is a multi-factor disease,” said Andersen. “The fact that someone has high levels of MAO-B does not necessarily mean they are fated to develop Parkinson’s.”

Andersen said results of the study point to the need for an early diagnostic test for Parkinson’s. "Currently, by the time people are diagnosed with the disease they have already lost 60% of the neurotransmitter levels implicated in Parkinson’s; treatment with a drug like deprenyl would likely be most effective if taken before symptoms appear in order to halt disease progression."

The novel transgenic mouse line created for this study provides a new model for exploring molecular pathways involved in the initiation or early progression of several key features associated with Parkinson’s pathology including dopaminergic midbrain cell loss. The mouse line also allows for additional therapeutic drug testing.

Joining Andersen in the study were Jyothi K. Mallajosyula, Deepinder Kaur, Shankar J. Chinta, Subramanian Rajagopalan, Anand Rane, and David G. Nicholls of the Buck Institute, along with Dino DiMonte of the Parkinson’s Institute and Heather Macarthur of the Saint Louis University School of Medicine. The work was funded by the National Institutes of Health (R01 NS40057-04) and the National Parkinson’s Foundation.

The Buck Institute is an independent non-profit organization dedicated to extending the healthspan, the healthy years of each individual’s life. The National Institute of Aging designated the Buck a Nathan Shock Center of Excellence in the Biology of Aging, one of just five centers in the country. Buck Institute scientists work in an innovative, interdisciplinary setting to understand the mechanisms of aging and to discover new ways of detecting, preventing and treating age-related diseases such as Alzheimer’s and Parkinson’s disease, cancer, stroke, and arthritis. Collaborative research at the Institute is supported by genomics, proteomics and bioinformatics technology.

Andrew Hyde | alfa
Further information:
http://www.buckinstitute.org
http://www.plos.org

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>