Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aircraft noise raises blood pressure even whilst people are sleeping

13.02.2008
Night-time noise from aircraft or traffic can increase a person’s blood pressure even if it does not wake them, according to a new study published today in the European Heart Journal.

Scientists from Imperial College London and other European institutions monitored 140 sleeping volunteers in their homes near London Heathrow and three other major European airports.

The researchers measured the volunteers’ blood pressure remotely at 15-minute intervals and then analysed how this related to the noise recorded in the volunteers’ bedrooms.

People with high blood pressure (hypertension) have an increased risk of developing heart disease, stroke, kidney disease and dementia. High blood pressure is defined by World Health Organisation as being 140/90mmHg or more.

The researchers found that volunteers’ blood pressure increased noticeably after they experienced a ‘noise event’ – a noise louder than 35 decibels – such as aircraft travelling overhead, traffic passing outside, or a partner snoring. This effect could be seen even if the volunteer remained asleep and so was not consciously disturbed.

Aircraft noise events caused an average increase in systolic blood pressure of 6.2 mmHg and an average increase in diastolic blood pressure of 7.4 mmHg. Similar increases in blood pressure were seen also for other noise sources such as road traffic.

The researchers found that the increase in blood pressure was related to the loudness of the noise, so that a greater increase in blood pressure could be seen where the noise level was higher. For example, for every 5dB increase in aircraft noise at its loudest point, there was an increase of 0.66 mmHg in systolic blood pressure.

The decibel level - and not the origin of the sound - was the key factor in determining the effect that each noise event had on the volunteers’ blood pressure, with similar effects regardless of the type of noise, where the ‘loudness’ of the noise was the same.

The research follows recent findings by the same researchers, showing that people who have been living for at least five years near an international airport, under a flight path, have a greater risk of developing high blood pressure than a population living in quieter areas. That study, published in the journal Environmental Health Perspectives, showed that an increase in night-time aeroplane noise of 10dB increased the risk of high blood pressure by 14 per cent in both men and women.

Dr Lars Jarup, one of the authors of the study from the Department of Epidemiology and Public Health at Imperial College London, said: “We know that noise from air traffic can be a source of irritation, but our research shows that it can also be damaging for people’s health, which is particularly significant in light of plans to expand international airports. Our studies show that night-time aircraft noise can affect your blood pressure instantly and increase the risk of hypertension.

It is clear to me that measures need to be taken to reduce noise levels from aircraft, in particular during night-time, in order to protect the health of people living near airports.”

The researchers are continuing their analyses to find out whether combined exposure to noise and air pollution increases the risk of heart disease.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>