Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aircraft noise raises blood pressure even whilst people are sleeping

13.02.2008
Night-time noise from aircraft or traffic can increase a person’s blood pressure even if it does not wake them, according to a new study published today in the European Heart Journal.

Scientists from Imperial College London and other European institutions monitored 140 sleeping volunteers in their homes near London Heathrow and three other major European airports.

The researchers measured the volunteers’ blood pressure remotely at 15-minute intervals and then analysed how this related to the noise recorded in the volunteers’ bedrooms.

People with high blood pressure (hypertension) have an increased risk of developing heart disease, stroke, kidney disease and dementia. High blood pressure is defined by World Health Organisation as being 140/90mmHg or more.

The researchers found that volunteers’ blood pressure increased noticeably after they experienced a ‘noise event’ – a noise louder than 35 decibels – such as aircraft travelling overhead, traffic passing outside, or a partner snoring. This effect could be seen even if the volunteer remained asleep and so was not consciously disturbed.

Aircraft noise events caused an average increase in systolic blood pressure of 6.2 mmHg and an average increase in diastolic blood pressure of 7.4 mmHg. Similar increases in blood pressure were seen also for other noise sources such as road traffic.

The researchers found that the increase in blood pressure was related to the loudness of the noise, so that a greater increase in blood pressure could be seen where the noise level was higher. For example, for every 5dB increase in aircraft noise at its loudest point, there was an increase of 0.66 mmHg in systolic blood pressure.

The decibel level - and not the origin of the sound - was the key factor in determining the effect that each noise event had on the volunteers’ blood pressure, with similar effects regardless of the type of noise, where the ‘loudness’ of the noise was the same.

The research follows recent findings by the same researchers, showing that people who have been living for at least five years near an international airport, under a flight path, have a greater risk of developing high blood pressure than a population living in quieter areas. That study, published in the journal Environmental Health Perspectives, showed that an increase in night-time aeroplane noise of 10dB increased the risk of high blood pressure by 14 per cent in both men and women.

Dr Lars Jarup, one of the authors of the study from the Department of Epidemiology and Public Health at Imperial College London, said: “We know that noise from air traffic can be a source of irritation, but our research shows that it can also be damaging for people’s health, which is particularly significant in light of plans to expand international airports. Our studies show that night-time aircraft noise can affect your blood pressure instantly and increase the risk of hypertension.

It is clear to me that measures need to be taken to reduce noise levels from aircraft, in particular during night-time, in order to protect the health of people living near airports.”

The researchers are continuing their analyses to find out whether combined exposure to noise and air pollution increases the risk of heart disease.

Laura Gallagher | alfa
Further information:
http://www.imperial.ac.uk

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Journey to the center of Mars

20.02.2020 | Physics and Astronomy

Laser writing enables practical flat optics and data storage in glass

20.02.2020 | Physics and Astronomy

New graphene-based metasurface capable of independent amplitude and phase control of light

20.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>