Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Gives Us Fingertip Dexterity?

11.02.2008
Biomedical Engineering Professor Valero-Cuevas traces precision hand manipulation skills to specialized neural circuits in the brain

Quickly moving your fingertips to tap or press a surface is essential for everyday life to, say, pick up small objects, use a BlackBerry or an iPhone. But researchers at the University of Southern California say that this seemingly trivial action is the result of a complex neuro-motor-mechanical process orchestrated with precision timing by the brain, nervous system and muscles of the hand.

USC Viterbi School of Engineering biomedical engineering professor Francisco Valero-Cuevas is working to understand the biological, neurological and mechanical features of the human hand that enable dexterous manipulation and makes it possible for a person to grasp and crack an egg, fasten a button, or fumble with a cell phone to answer a call.

“When you look at the hand, you think, ‘five fingers, what could be more straightforward?’ ” Valero-Cuevas said, “but really we don’t understand well what a hand is bio-mechanically, how it is controlled neurologically, how disease impairs it, and how treatment can best restore its function. It is difficult to know how each of its 30-plus muscles contributes to everyday functions like using a cell phone or performing the many finger tasks it takes to dress yourself.”

In a study published online in the Feb. 6, 2008 issue of The Journal of Neuroscience, titled “Neural Control Of Motion-to-Force Transitions with the Fingertip,” Valero-Cuevas and co-author Madhusudhan Venkadesan of Cornell University’s Department of Mathematics asked volunteers to tap and push against a surface with their forefinger while the researchers recorded the fingertip force and electrical activity in all of the muscles of the hand.

These researchers, in a first-of-a-kind experiment, recorded 3D fingertip force plus the complete muscle coordination pattern simultaneously using intramuscular electromyograms from all seven muscles of the index finger. Subjects were asked to produce a downward tapping motion, followed by a well-directed vertical fingertip force against a rigid surface. The researchers found that the muscle coordination pattern clearly switched from that for motion to that for force (~65 ms) before contact. Venkadesan’s mathematical modeling and analysis revealed that the underlying neural control also switched between mutually incompatible strategies in a time-critical manner.

“We think that the human nervous system employs a surprisingly time-critical and neurally demanding strategy for this common and seemingly trivial task of tapping and then pushing accurately, which is a necessary component of dexterous manipulation,” said Valero-Cuevas, who holds a joint appointment in the USC School of Dentistry’s division of Biokinesiology and Physical Therapy.

“Our data suggest that specialized neural circuitry may have evolved for the hand because of the time-critical neural control that is necessary for executing the abrupt transition from motion (tap) to static force (push),” he said. “In the tap-push exercise, we found that the brain must be switching from the tap command to the push command while the fingertip is still in motion. Neurophysiological limitations prevent an instantaneous or perfect switch, so we speculate that there must be specialized circuits and strategies that allow people to do so effectively.

“If the transition between motor commands is not well timed and executed, your initial forces will be misdirected and you simply won’t be able to pick up an egg, a wine glass or a small bead quickly,” he said.

The findings begin to explain why it takes young children years to develop fine finger muscle coordination and skills such as precision pinching or manipulation, and why fine finger manipulation is so vulnerable to neurological diseases and aging, Valero-Cuevas said.

But perhaps even more importantly, he said, the findings suggest a functional explanation for an important evolutionary feature of the human brain: its disproportionately large sensory and motor centers associated with hand function.

“If, indeed, the nervous system faced evolutionary pressures to be able to anticipate and precisely control routine tasks like rapid precision pinch, the cortical structures for sensorimotor integration for finger function would probably need to be pretty well developed in the brain,” Valero-Cuevas said.

“That would give us the neural circuits needed for careful timing of motor actions and fine control of finger muscles,” he said. “Thus, our work begins to propose some functional justifications for the evolution of specialized brain areas controlling dexterous manipulation of the fingertips in humans.”

By understanding the neuromuscular principles behind dexterous manipulation, Valero-Cuevas hopes to help those who have lost the use of their hands by guiding rehabilitation and helping to develop the next generation of prosthetics. In addition, the work will allow industry to build machines that have versatility comparable to that of the human hand.

“As an analogy, I ask people to imagine going through life wearing winter gloves,” he said. “If you can grasp things in only the grossest of ways without fine manipulation, life is pretty difficult. Yet millions of people worldwide go through life without the full use of their hands. Diseases and aging processes that affect the hand function tend to disproportionately degrade the quality of life, and we want to reverse that.”

The research was supported by the Whitaker Foundation, the National Science Foundation and the National Institutes of Health.

Diane Ainsworth | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>