Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deficient "fire regulators" in the immune system responsible for type 1 diabetes

24.01.2008
The main regulators of the immune system, called CD4+Treg cells, are thought to be highly involved in a large range of immune diseases.

The gradual reduction in their regulating capacity seems to play a critical role in the onset of type 1 diabetes, as demonstrated in the latest study by Dr. Ciriaco Piccirillo, a researcher in the Department of Microbiology and Immunology at the Research Institute of the McGill University Health Centre and the principal investigator for this project. This study was published this month in the journal Diabetes.

The immune system needs to be regulated so that it attacks only the site of an inflammation and focuses its attack on pathogens rather than on the body tissues, causing an autoimmune disease.

In a healthy patient, CD4+Treg cells deactivate any T lymphocytes, a type of immune cell, that are misprogrammed and could attack the body. Dr Piccirillo's research indicates that in type 1 diabetic patients this control mechanism may be deficient, thereby allowing the misprogrammed T lymphocytes to proliferate and gain the ability to destroy the insulin-producing cells of the pancreas. This leads to type 1 diabetes.

"We have been able to demonstrate this in mice with type 1 diabetes, and other genetic studies have shown that this same mechanism is applicable to humans," explained Dr. Piccirillo. Dr Piccirillo is an assistant professor at the McGill University, and the Canada Research Chair in Regulatory Lymphocytes of the Immune System. "Furthermore, the predominant role of nTreg cells leads us to believe that they are also involved in other autoimmune pathologies. Finding this common denominator among diseases that were previously thought to be unrelated is a very promising avenue for future study", he adds.

Although the mechanism of action of CD4+Treg cells has not yet been completely unravelled, the scientific community generally accepts that this mechanism is of crucial importance to the entire immune system. Major fundamental and applied research efforts are currently being directed down this path and aim to clarify the role of CD4+Treg cells in order to develop innovative cellular therapies that could restore immune stability in patients.

"The eventual hope is to treat the cause of type 1 diabetes and other autoimmune diseases and not just their symptoms, as we do today", says Dr Piccirillo.

This study was funded by the Canadian Institutes of Health Research and the Canadian Diabetes Association.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

Isabelle Kling | RI MUHC
Further information:
http://www.muhc.ca/research

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>