Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Military Technique Could Aid Stroke Victims

18.01.2008
University of Leicester researchers are pioneering use of military radar signal processing methods to help victims of stroke – the third most common cause of death in the UK.

The Leicester study has discovered that techniques used in radar systems can be modified and have the potential to improve early diagnosis and effective monitoring of stroke victims.

Research by Joanne Cowe in the University’s Medical Physics group led to the breakthrough which offers huge potential to deliver benefits to patients.

Joanne said: “Stroke is the third most common cause of death and the most common cause of adult disability in the UK and is estimated to cost the NHS over £2.3 billion per year. One quarter of strokes are due to emboli (blood clots or other foreign bodies) blocking small blood vessels in the brain. Emboli can originate from a number of sources such as the heart or from plaques in arteries in the head or neck due to vascular disease.

“Doppler ultrasound can be used for the detection of emboli in the cerebral circulation and can also be used to monitor the blood flow through vessels to assess if there are any problems such as blockages. Therefore, research into the detection of emboli and vascular disease, using ultrasound, has the potential to reduce stroke death and disability rates, and to generate large financial savings.”

Joanne graduated with a Masters in Electrical and Electronic Engineering before going on to work as a military systems engineer. She then went on to undertake a PhD as part of the University of Leicester’s Medical Physics group. In her PhD she investigated how radar techniques could improve the operation of medical ultrasound devices. In particular she looked at how these technologies could be used to detect and monitor the blood clots or other foreign bodies travelling through blood vessels in the brain which can lead to strokes.

Joanne will be presenting the findings of her Ph.D. research at a doctoral inaugural lecture on Wednesday 6th February. In this lecture she will explain how she investigated new methods of processing the ultrasound signal so as to obtain additional information. In particular she will be describing how techniques used in radar systems can be modified and utilised in a Doppler ultrasound system to improve the resolution, thereby providing more detailed information about the depths at which movement is occurring. This has the potential to aid in the early diagnosis and also in the monitoring of progression of vascular disease.

The second doctoral inaugural lecture will take place on Wednesday 6th February at 5.30pm in Ken Edwards Lecture Theatre 3. In addition to Joanne Cowe it will also feature Carolyn Tarrant (School of Psychology) talking about her research on “Trust Me I’m A Doctor”. Please email pgevents@le.ac.uk for further information or if you wish to attend.

Ather Mirza | alfa
Further information:
http://www.le.ac.uk

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>