Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests future sea-level rises may be even higher than predicted

18.12.2007
A new study of past sea levels shows that they rose by an average of 1.6 metres every one hundred years the last time the Earth was as warm as it is predicted to be later this century, with levels reaching up to six metres above those seen today. The findings suggest that current predictions of sea-level rises may be too low.

The study by a consortium of scientists from the National Oceanography Centre, Southampton and research centres in Tübingen (Germany), Cambridge and New York, is published this week in the new journal Nature Geoscience.

The rate of future sea level rise is one of the crucial uncertainties in projections of future climate warming. During the last interglacial (124 to 119 thousand years ago), also known as the Eemian or Marine Isotope Stage 5e, the Earth's climate was warmer than it is today, due to a different configuration of the planet's orbit around the Sun.

It was also the most recent period in which sea levels reached around six metres (20 feet) above the present, due to melt-back of ice sheets on Greenland and Antarctica. The new results provide the first robust documentation of the rates at which sea level rose to these high positions.

Lead author, Professor Eelco Rohling of the University of Southampton's School of Ocean and Earth Science, based at the National Oceanography Centre, said: 'There is currently much debate about how fast future sea level rise might be. Several researchers have made strong theoretical cases that the rates of rise projected from models in the recent IPCC Fourth Assessment are too low. This is because the IPCC estimates mainly concern thermal expansion and surface ice melting, while not quantifying the impact of dynamic ice-sheet processes. Until now, there have been no data that sufficiently constrain the full rate of past sea level rises above the present level.

'We have exploited a new method for sea level reconstruction, which we have pioneered since 1998, to look at rates of rise during the last interglacial. At that time, Greenland was 3 to 5°C warmer than today, similar to the warming expected 50 to 100 years from now. Our analysis suggests that the accompanying rates of sea level rise due to ice volume loss on Greenland and Antarctica were very high indeed. The average rate of rise of 1.6 metres per century that we find is roughly twice as high as the maximum estimates in the IPCC Fourth Assessment report, and so offers the first potential constraint on the dynamic ice sheet component that was not included in the headline IPCC values.'

The researchers' findings offer a sound observational basis for recent suggestions about the potential for very high rates of sea-level rise in the near future, which may exceed one metre per century. Current ice-sheet models do not predict rates of change this large, but they do not include many of the dynamic processes already being observed. The new results highlight the need for further development of a better understanding of ice-sheet dynamics in a changing climate.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>