Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caspase-1 protein governs the body inflammatory response

13.12.2007
What happens when bacteria infect the human body?

In an attempt to shed light on this process, Dr. Maya Saleh, researcher at the critical care division and the centre for the study of host resistance of the McGill University Health Centre (MUHC) Research Institute, describes previously unsuspected metabolic pathways involved in the inflammatory response. This discovery could lead to many potential benefits, particularly for the treatment of sepsis: infections that spread to the blood and deteriorates into a whole-body inflammatory state.

Her study is published in the Journal of Biological Chemistry. Because of the high quality of the research, this article was selected as a "Paper of the Week" for the December 14, 2007 issue of the journal, a distinction awarded to only one percent of its publications.

One of the body's first defenses against a bacterial infection is the activation of pathogen-eating cells called macrophages, which ingest the bacteria. This ingestion activates a protein inside the macrophage called Caspase-1. Dr. Saleh's study shows that Caspase-1 is the starting point for many metabolic reactions that, together, lead to the death of the macrophage and activate the rest of the immune system.

One of the roles of Caspase-1 in inflammation has been known for many years, namely that it activates immune system messengers called cytokines, which in turn activate the body's entire defense mechanism. But we now know this is not its sole function: "Our study demonstrates that Caspase-1 also causes the death of the macrophage by destroying some of the cell's basic structures and by blocking many metabolic pathways. The main pathway it blocks is glycolysis, or the production of energy through the breakdown of glucose," said Dr. Saleh, who is also an assistant professor in the faculty of medicine at the McGill University.

This finding opens new doors for fundamental research. Previous results suggested that Caspase-1 is also involved in fatal respiratory arrest that can occur during septic shock. Further research will be required to determine if that blockade of glycolysis by caspase-1 is a contributing factor.

This study could also have an important impact on the applied research of pharmaceutical companies. Currently, most anti-inflammatory drugs prescribed to fight sepsis target cytokines. "We know empirically that the effect of medications that target cytokines during sepsis is limited; our study demonstrates that Caspase-1 would be a more effective target", added Dr. Saleh. Since sepsis is no longer considered simply as a "cytokine storm", but as a more complex network of metabolic reactions, our vision of how to fight it needs to evolve accordingly.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

For more information please contact:

Isabelle Kling
Communications Coordinator (research)
MUHC Public Relations and Communications
(514) 934-1934 #36419
isabelle.kling@muhc.mcgill.ca

Isabelle Kling | MUHC
Further information:
http://www.muhc.ca/research

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>