Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Remapping gang turf: Math model shows crimes cluster on borders between rivals

25.06.2012
A mathematical model that has been used for more than 80 years to determine the hunting range of animals in the wild holds promise for mapping the territories of street gangs, a UCLA-led team of social scientists reports in a new study.

"The way gangs break up their neighborhoods into unique territories is a lot like the way lions or honey bees break up space," said lead author P. Jeffrey Brantingham, a professor of anthropology at UCLA.

Further, the research demonstrates that the most dangerous place to be in a neighborhood packed with gangs is not deep within the territory of a specific gang, as one might suppose, but on the border between two rival gangs. In fact, the highest concentration of conflict occurs within less than two blocks of gang boundaries, the researchers discovered.

The findings appear online today in Criminology, a peer-reviewed scholarly journal published by the American Society of Criminology, the world's largest society of scholars conducting research on crime.

"Maps of gang territories provide police with a better understanding of how to allocate resources," said research co-author George E. Tita, an associate professor of criminology, law and society at UC Irvine. "So figuring out the most accurate approach is really important for effectively deploying law enforcement."

Currently, law enforcement agencies map gang territories based on police observation of such clues as graffiti and where gang members hang out. In these maps, geographic features like streets, parks and schoolyards typically delineate gang territories.

For the Criminology study, the team used Lotka–Volterra equations, which were designed to model the population dynamics of species competing for common resources. Since the 1930s, ecologists have used the equations to study the relationships between competing groups as diverse as bee colonies, troops of chimpanzees and prides of lions.

The equations are based on the principle that competition between groups determines where the boundaries between rivals form, and even a tiny amount of competition is enough to cause territories to form.

"What's at work is a competitive balancing act where both gangs are trying to keep their rival as far away as possible," Brantingham said.

The model the researchers derived from the equation predicted that gang boundaries would form midway between the home bases of rivals and would run in a perpendicular line between them.

The team looked at 13 gangs in the 6.5-square-mile area of Boyle Heights, a densely populated neighborhood on Los Angeles' east side that is bounded by three freeways. Gang activity tends to be confined within the freeway-bounded area.

To determine the home bases for each gang, the researchers relied on a prior study by Tita and his UC Irvine colleagues. The locations of the home bases ranged from a specific street corner to someone's house, a neighborhood business or any other specific location where a gang gathers most frequently.

Using the Lotka–Volterra formula, Brantingham's team drew boundaries between the known gangs. Unlike law enforcement's maps, the resulting effort did not produce gang boundaries that neatly followed streets. Instead, the boundaries ran through the yards of homes and businesses and through alleyways. When the boundaries did land on streets, they were as likely to crisscross them as follow them.

Using police records, the researchers then mapped 563 known gang crimes that occurred between 1999 and 2002 and have been attributed by police to at least one of the 13 gangs. To their surprise, most of the crimes fell on the borders that the model laid between gang territories. When crime locations did deviate from the borders, they did so in a configuration that was consistent with the model. For instance, the theory predicted that 58.8 percent of the crimes would occur within one-fifth of a mile of the border between two gangs — or just under two blocks — and 87.5 percent within two-fifths of a mile of the border — or just over three blocks. Overall, 99.8 percent of crimes could be expected to occur within one mile of the border, according to the theory.

In fact, the team found that 58.2 percent occurred within two blocks of the border and 83.1 percent within just over three blocks of the border; in total, 97.7 percent of the crimes took place within one mile of the border between gangs.

"You would think that we're more complicated than other animals, so a model this simplistic shouldn't work, but I was surprised that it fit as well as it did," said co-author Martin B. Short, an assistant adjunct professor of mathematics at UCLA.

It's no coincidence that Lotka–Volterra equations would have bearing on the configurations of gang territories: The same forces that define territories in the animal kingdom also are at work in all kinds of rivalries between groups of people, the researchers stress.

"The findings match up with what we know about any conflict," Tita said. "Skirmishes tend to occur on disputed boundaries on which individuals, organizations or nation-states seek control."

The researchers plan to compare their gang maps with those derived by law enforcement.

The research, conducted in partnership with the Los Angeles Police Department, was funded by the National Science Foundation and the Air Force Office of Scientific Research.

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Meg Sullivan | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Studies and Analyses:

nachricht How to design city streets more fairly
18.05.2020 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Insects: Largest study to date confirms declines on land, but finds recoveries in freshwater – Highly variable trends
24.04.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

An MRI technique has been developed to improve the detection of tumors

03.06.2020 | Medical Engineering

K-State study reveals asymmetry in spin directions of galaxies

03.06.2020 | Physics and Astronomy

The cascade to criticality

03.06.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>