Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reading rats’ minds

29.11.2018

Scientists can predict where a rat will go next based on how its hippocampal neurons fire – Study published in Neuron

Place cells in the hippocampus fire when we are in a certain position – this discovery by John O’Keefe, May-Britt Moser and Edvard Moser brought them the Nobel Prize in Medicine in 2014. Based on which place cell fires, scientists can determine were a rat is.


Thoughts

IST Austria/Birgit Rieger

Neuroscientists are now able to tell where a rat will go next, just from observing which neuron fires in a task that tests rats’ reference memory.

These are the results of a study published today in Neuron, carried out by the group of Jozsef Csicsvari at the Institute of Science and Technology Austria (IST Austria), with first author and postdoc Haibing Xu, and Csicsvari’s former postdocs Peter Baracskay and Joseph O’Neill, now faculty at Cardiff University.

Scientists can infer a rat’s location based on which place cell - found in the brain region called hippocampus - sends signals. However, sometimes the place cell that is active does not correspond with the rat’s current location.

“This gives us an insight into what the animal is thinking about space”, says Jozsef Csicsvari. “We used this concept to understand how rats think during tasks that test their spatial memory.”

In the experiments, rats navigated through a maze with eight arms. Three arms contained food rewards. The rats revisited the maze so that they formed memories of where the rewards were hidden. This task teases apart two different forms of spatial memory: reference and working memory.

Reference memory is the memory that allows a rat to remember which arms contain rewards, and which arms don’t. Working memory is the memory that keeps track of which arms the rat hasn’t been to yet and which ones it has already visited, so that the rat doesn’t make unnecessary trips.

The researchers can test pure working memory by modifying the experiment so that only arms that contain rewards are open, or pure reference memory by closing off arms that have been visited already.

The researchers then asked: how do place cells fire when rats navigate a maze, and how does firing differ between reference and working memory tasks? At the center of the maze, before the rat enters the next arm, the sequence of place cells that fire corresponds either to the route the rat took in the last arm it visited, or to the arm it is going to run down next.

In tasks testing reference memory, the sequence corresponds to the next maze arm the rat will visit, giving the researchers a glimpse into the rat’s immediate plans. “The animal is thinking about a different place than the one it is in. In fact, we can predict which arm the rat will enter next”, Csicsvari explains.

Not only can the researchers predict where the rat will go next, they also know when the rat will make a mistake, says Csicsvari: “When the rat makes a mistake, it replays a random route. Based on the place cells, we can predict that the rat will make a mistake before it commits it.”

However, the prediction fails in working memory tasks. In tasks that test only working memory, the firing pattern instead replays the last arm that the animal visited.

The researchers hypothesize that the brain uses different strategies to solve reference and working memory tasks. “With reference memory, the brain truly navigates and remembers that ‘this is a location I have to go to’.

This uses the hippocampus, which is important for spatial tasks. Working memory is more abstract, each location is an item on the animal’s list of places to visit. The hippocampus probably signals to the prefrontal cortex where the rat was, and the prefrontal cortex keeps track of which items it can tick off”, Csicsvari summarizes.

About IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor's or master's degree in biology, neuroscience, mathematics, computer science, physics, and related areas. http://www.ist.ac.at

Wissenschaftliche Ansprechpartner:

Jozsef Csicsvari
Institute of Science and Technology Austria (IST Austria)
Phone: +43 (0)2243 9000-4301
E-mail: jozsef.csicsvari@ist.ac.at

Originalpublikation:

Haibing Xu, Peter Baracskay,Joseph O’Neill, and Jozsef Csicsvari, “Assembly responses of hippocampal CA1 place cells predict learned behavior in goal-directed spatial tasks on the radial eight-arm maze", Neuron, 2018, DOI: 10.1016/j.neuron.2018.11.015

Weitere Informationen:

https://ist.ac.at/en/research/research-groups/csicsvari-group/

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Further reports about: Neuron memory tasks prefrontal cortex rats spatial memory working memory

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>