Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein that functions in normal breast may also contribute to breast cancer metastasis

16.02.2012
Paradox explored in a study reported in the American Journal of Pathology

The trefoil factor 3 (TFF3) protein protects and maintains the integrity of the epithelial surface in the normal breast. New research has found that while TFF3 protein expression is higher in well-differentiated low grade tumors and therefore associated with features of a good prognosis, it has a more sinister role in breast cancer invasion and metastasis. The report is published in the March issue of the American Journal of Pathology.

"Our findings suggest that TFF3 is regulated by estrogen and has beneficial properties in breast epithelia," says lead investigator Felicity E.B. May, PhD, of the Northern Institute for Cancer Research and the Department of Pathology at Newcastle University, UK. "We propose that early during breast tumorigenesis, TFF3 retains its association with normal functionality of breast epithelial cells. Subsequently, with the loss of tumor cell differentiation, its function is subverted to promote the development of tumors and infiltration and lymph node metastasis."

To determine the role of TFF3 in breast cancer, researchers measured its level in tissue samples from normal breasts, benign breast lesions, in situ carcinomas, invasive carcinomas, and involved lymph nodes. TFF3 was expressed in the majority of benign and malignant breast lesions studied. Well-differentiated tumor types expressed higher levels of TFF3. There was a positive association between TFF3 protein expression and microvessel density, suggesting that it stimulates angiogenesis in breast tumors.

A striking finding of the study is the strength and consistency of the association between TFF3 expression and a more metastatic phenotype in invasive breast cancer. TFF3 was expressed at higher levels in primary tumors with associated metastasis, and its expression was higher in malignant cells that have metastasized away from those within the primary tumor. There appears to be a switch in the normal polarized secretion of TFF3 in invasive cancer, which allows it to exert invasion-promoting effects.

The study suggests that TFF3 may be one of the genes that mediate the various effects of estrogens in breast cancer. "The paradox remains, however, for both the estrogen receptor and TFF3, that they contribute to the normal physiology of the breast epithelium yet are involved in the progression of cancer," notes Dr. May.

Importantly, the investigators also evaluated the potential of TFF3 as a biomarker of lymphovascular invasion and lymph node metastasis. They found that TFF3 had greater predictive power than other markers analyzed, including tumor grade, age, tumor size and type, and estrogen and progesterone receptor status. "Our study reinforces the view that TFF3 expression merits evaluation as a prognostic biomarker and as a predictive marker of response to therapy," concludes Dr. May. "It is probable that its malign effects will be mitigated by adjuvant endocrine therapy in women with hormone-responsive cancers. However, the usefulness of TFF3 as a marker of hormone responsiveness needs to be evaluated."

The article is "TFF3 Is a Normal Breast Epithelial Protein and Is Associated with Differentiated Phenotype in Early Breast Cancer but Predisposes to Invasion and Metastasis in Advanced Disease," by A.R.H. Ahmed, A.B. Griffiths, M.T. Tilby, B.R. Westley, and F.E.B. May (doi: 10.1016/j.ajpath.2011.11.022). It will appear in The American Journal of Pathology, Volume 180, Issue 3 (March 2012) published by Elsevier.

David Sampson | EurekAlert!
Further information:
http://www.elsevier.com

Further reports about: Cancer Pathology Protein TFF3 breast breast cancer lymph node primary tumor protein expression

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>