Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Primates' brains make visual maps using triangular grids

29.10.2012
Primates' brains see the world through triangular grids, according to a new study published online Sunday in the journal Nature.

Scientists at Yerkes National Primate Research Center, Emory University, have identified grid cells, neurons that fire in repeating triangular patterns as the eyes explore visual scenes, in the brains of rhesus monkeys.

The finding has implications for understanding how humans form and remember mental maps of the world, as well as how neurodegenerative diseases such as Alzheimer's erode those abilities. This is the first time grid cells have been detected directly in primates. Grid cells were identified in rats in 2005, and their existence in humans has been indirectly inferred through magnetic resonance imaging.

Grid cells' electrical activities were recorded by introducing electrodes into monkeys' entorhinal cortex, a region of the brain in the medial temporal lobe. At the same time, the monkeys viewed a variety of images on a computer screen and explored those images with their eyes. Infrared eye-tracking allowed the scientists to follow which part of the image the monkey's eyes were focusing on. A single grid cell fires when the eyes focus on multiple discrete locations forming a grid pattern.

"The entorhinal cortex is one of the first brain regions to degenerate in Alzheimer's disease, so our results may help to explain why disorientation is one of the first behavioral signs of Alzheimer's," says senior author Elizabeth Buffalo, PhD, associate professor of neurology at Emory University School of Medicine and Yerkes National Primate Research Center. "We think these neurons help provide a context or structure for visual experiences to be stored in memory."

"Our discovery of grid cells in primates is a big step toward understanding how our brains form memories of visual information," says first author Nathan Killian, a graduate student in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "This is an exciting way of thinking about memory that may lead to novel treatments for neurodegenerative diseases."

In the experiments in which rats' grid cells were identified, the cells fired whenever the rats crossed lines on an invisible triangular grid.

"The surprising thing was that we could identify cells that behaved in the same way when the monkeys were simply moving their eyes," Buffalo says. "It suggests that primates don't have to actually visit a place to construct the same kind of mental map."

Another aspect of grid cells not previously seen with rodents is that the cells' responses change when monkeys are seeing an image for the second time. Specifically, the grid cells reduce their firing rate when a repeat image is seen. Moving from the posterior (rear) toward the anterior (front) of the entorhinal cortex, more neurons show memory responses.

"These results demonstrate that grid cells are involved in memory, not just mapping the visual field," Killian says.

Consistent with previous reports on grid cells in rats, Killian and Buffalo observed "theta-band" oscillations, where grid cells fire in a rhythmic way, from 3 to 12 times per second. Some scientists have proposed that theta oscillations are important for grid cell networks to be generated in development, and also for the brain to put together information from the grid cells. In the monkeys, populations of neurons exhibited theta oscillations that occurred in intermittent bouts, but these bouts did not appear to be critical for formation of the spatial representation.

Vision is thought to be a more prominent sense for primates (monkeys and humans) compared with rodents, for whom touch and smell are more important. While grid cells in rodents and primates were detected in different types of experiments, Buffalo says that it doesn't mean grid cells necessarily have a different nature in primates.

"We are now training a monkey to move through a virtual 3-D space. My guess is that we'll find grid cells that fire in similar patterns as the monkey navigates through that space," she says.

Buffalo says future experiments could examine how monkeys navigate in real space, including changes in head or body orientation, to determine how grid cells respond.

Quinn Eastman | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>