Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prenatal Meth Exposure Linked to Abnormal Brain Development

16.04.2009
A first of its kind study examining the effects of methamphetamine use during pregnancy has found the drug appears to cause abnormal brain development in children. The research is published in the April 15, 2009, online issue of Neurology®, the medical journal of the American Academy of Neurology.

“Methamphetamine use is an increasing problem among women of childbearing age, leading to an increasing number of children with prenatal meth exposure,” said study author Linda Chang, MD, with the John A. Burns School of Medicine, University of Hawaii at Manoa in Honolulu. “But until now, the effects of prenatal meth exposure on the developing brain of a child were little known.”

For the study, brain scans were performed on 29 three and four-year-old children whose mothers used meth while pregnant and 37 unexposed children of the same ages. The MRI scans used diffusion tensor imaging to help measure the diffusion of molecules in a child’s brain, which can indicate abnormal microscopic brain structures that might reflect abnormal brain development.

The scans showed that children with prenatal meth exposure had differences in the white matter structure and maturation of their brains compared to unexposed children. The children with prenatal meth exposure had up to four percent lower diffusion of molecules in the white matter of their brains.

“Our findings suggest prenatal meth exposure accelerates brain development in an abnormal pattern,” said Chang. “Such abnormal brain development may explain why some children with prenatal meth exposure reach developmental milestones later than others.”

Studies have shown that prenatal meth exposure can lead to increased stress and lethargy and poorer quality of movement for infants.

“While we don’t know how prenatal meth exposure may lead to lower brain diffusion, less diffusion of molecules in white matter typically reflects more compact axonal fibers in the brain,” said Chang. “This is consistent with our prior findings of smaller subcortical structures in children with prenatal meth exposure, which is the portion of the brain immediately below the cerebral cortex.”

Long-term studies are underway to determine if the brain differences found in children with prenatal exposure to meth will normalize with age.

The study was supported by the National Institute on Drug Abuse, the National Center for Research Resources, the National Institute of Neurological Disorders and Stroke and the Office of National Drug Control Policy.

The American Academy of Neurology, an association of more than 21,000 neurologists and neuroscience professionals, is dedicated to improving patient care through education and research. A neurologist is a doctor with specialized training in diagnosing, treating and managing disorders of the brain and nervous system such as multiple sclerosis, restless legs syndrome, Alzheimer’s disease, narcolepsy, and stroke.

Rachel Seroka | American Academy of Neurology
Further information:
http://www.aan.com
http://www.aan.com/press

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>