Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Post-Olympics Emissions from China Studied by Team

10.07.2009
A Valparaiso University researcher, Dr. Gary Morris, and two undergraduate students are traveling to Japan to study the impact of China's steps to reduce air pollution and shed light on how emissions from China affect other nations.

A year after China took drastic measures to reduce air pollution and clear Beijing’s often hazy skies for the Olympic Games, a Valparaiso University research team is traveling to Japan to study the impact of those efforts and shed greater light on how emissions from China are affecting other nations. Valpo is a member of the Council on Undergraduate Research.

Dr. Gary Morris, an associate professor of physics and astronomy who has conducted extensive research of the transport of air pollution over long distances, and two undergraduate students will travel to Japan later this month to continue an air pollution research project that started last summer.

Valpo’s research team will replicate its 2008 work – when it launched 10 research balloons before, during and following the Olympics. Direct comparisons between the two years of data will provide insight into the impact of China’s pollution on air quality in Japan.

“There’s pretty clear evidence that Japan’s air quality is being negatively affected by Chinese emissions, but the question is to what extent,” said Dr. Morris, whose project is supported by a Fulbright Scholar grant and NASA’s Office of Earth Sciences.

Accompanying him to assist with the balloon launches and data analysis are Nathan Kellams, a junior physics major from Portage, and Ted Pietrzak, a junior meteorology major from Edwardsburg, Mich.

Pietrzak said sensors will continuously monitor ozone and sulfur dioxide pollution levels as the balloons rise to an altitude of more than 100,000 feet.

“Using computer models and weather data, we can gauge where pollution has come from on the days we release our balloons,” Pietrzak said.

Dr. Morris and his students will conduct their balloon launches at Hokkaido University. While the students will return to campus in late August, Dr. Morris will remain in Japan until late December and analyze pollution data at the Frontier Research Center for Global Change in Yokohama.

Following this summer’s research, Dr. Morris says the data collected will better quantify how much air pollution China is generating, show how that pollution is affecting neighboring Japan and indicate the effectiveness of China’s pollution control strategy for the Olympics.

Dr. Morris said last year’s research indicates air pollution generated in China can substantially impact air quality in Japan. An Aug. 6 balloon launch in Sapporo, two days before the start of the Olympics, showed a band of ozone approximately one kilometer above the city that was more than three times higher than the normal ozone level.

“That’s a pretty good sign of transported air pollution,” he said.

During the 2008 Olympics, Beijing enjoyed clear skies, which Dr. Morris said likely resulted from a combination of China’s efforts to slash air pollution and favorable meteorological conditions.

In May, Dr. Morris co-chaired a special session at the American Geophysical Union meeting in Toronto that focused on air pollution and its interactions with weather and climate in East Asia before, during and after the Beijing Olympics. Dr. Morris and other researchers studying East Asian pollution in 2008 shared what they learned about pollution in China and the effectiveness of China’s pollution control measures.

“That was a good opportunity to see what everyone else was working on and I think that it will spur some future collaboration between scientists studying air pollution,” Dr. Morris said.

Before the end of his five months in Japan, Dr. Morris hopes to travel to Beijing and meet with air pollution researchers there.

“China has very high density industrial regions that generate significant air pollution with very few emission control measures,” he said. “It’s a growing concern in the region and beyond.”

During his time in Japan this summer and fall, Dr. Morris will post updates about the research and data collected online at physics.valpo.edu/ozone/fulbrightdata.html as well as on his project blog at polympics.wordpress.com.

The research project fits Pietrzak’s interests in pursuing a career in environmental work that would focus on sustainable lifestyles within industrial civilization.

“I have great interest in the ways humans negatively alter the Earth’s natural state, and air pollution is a critical problem that I can help research,” Pietrzak said.

Kellams, who has been working on a particle research project with Valpo physics faculty this summer, said the air pollution project provides an opportunity to get involved in a new area of research.

“One of the reasons I am taking on the environmental project with Dr. Morris is not only because the topic is interesting, but also to broaden my experience as a researcher,” Kellams said.

Dr. Morris has previously conducted research on air pollution emitted from countries in East Asia during spring 2006 as part of a NASA research project, and he has studied air pollution in Houston since 2004, launching nearly 300 balloons over the past five years.

Dustin J. Wunderlich | Newswise Science News
Further information:
http://www.cur.org/

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>