Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar bears are evolutionary older than previously known: ancestry traced back to 600,000 years ago

20.04.2012
A study appearing in the current issue of the journal “Science” reveals that polar bears evolved as early as some 600,000 years ago.
An international team led by researchers from the German Biodiversity and Climate Research Centre (BiK-F) shows the largest arctic carnivore to be five times older than previously recognized. The new findings on the evolutionary history of polar bears are the result of an analysis of information from the nuclear genome of polar and brown bears, and shed new light on conservation issues regarding this endangered arctic specialist.

Polar bears are uniquely specialized for life in the arctic. This fact is undispu-ted, and supported by a range of morphological, physiological and behavioural evidence. However, conducting research on the evolutionary history of polar bears is difficult. The arctic giant spends most of its life on sea ice, and typically also dies there. Its remains sink to the sea floor, where they get ground up by glaciers, or remain undiscovered. Fossil remains of polar bears are therefore scarce. Because the genetic information contained in each organism carries a lot of information about the past, researchers can study the history of the species by looking at the genes of today’s polar bears.

Analysis of the genetic information in the cell nucleus
Recent studies had suggested that the ancestor of polar bears was a brown bear that lived some 150,000 years ago, in the late Pleistocene. That research was based on DNA from the mitochondria - organelles often called the ‘powerhouses of the cell’. Researchers from the German Biodiversity and Climate Research Centre (BiK-F), together with scientists from Spain, Sweden and the USA, now took an in-depth look at the genetic information contained in the cell nucleus. Frank Hailer, BiK-F, lead author of the study explains: “Instead of the traditional approach of looking at mitochondrial DNA we studied many pieces of nuclear DNA that are each independently inherited. We characterized those pieces, or genetic markers, in multiple polar and brown bear individuals”.

Polar bears had much more time for adaptation and speciation than previously assumed
This genetic survey was well worth the effort - the information obtained from nuclear DNA indicates that polar bears actually evolved in the mid Pleistocene, some 600,000 years ago. This provides much more time for the polar bear ancestors to colonize and adapt to the harsh conditions of the arctic. Based on studies of mitochondrial DNA, polar bears had earlier been considered an example of surprisingly rapid adaptation of a mammal to colder climates. The polar bear’s specific adaptations, including its black skin, white fur, and fur-covered feet now seem less surprising. “In fact, the polar bear genome harbours a lot of distinct genetic information”, says Hailer, “which makes a lot of sense, given all the unique adaptations in polar bears”.

Maternally inherited (mitochondrial) DNA was showing a biased picture
Previous studies of mitochondrial DNA had indicated that polar bears are much younger as a species. The authors of the new paper in “Science” explain this apparent discrepancy with past events of hybridization between polar and brown bears - a process recently observed in the Canadian arctic. After their initial speciation, polar bears and brown bears came into contact again, maybe due to past climatic fluctuations. The mitochondrial DNA found in polar bears today was probably inherited from a brown bear female that hybridized with polar bears at some point in the late Pleistocene. It appears that much of the nuclear genome remained unaffected by hybridization, so polar bears retained their genetic distinctiveness. “Each part of the genome tells its own story. In our study we analysed nuclear DNA that is inherited from both parents. It provides a more detailed and accurate picture of the evolutionary history of a species than mitochondrial DNA that is inherited only from the mother”, says Axel Janke, BiK-F, senior author on the study who also headed the recent sequencing of the brown bear genome. He goes on to say: “Inferring a species’ evolutionary history based on mitochondrial DNA alone is like solving a puzzle with only a few of the many available pieces. You need to study many genetic markers (loci) to put together the full picture.”
Genome carries evidence of past climate fluctuations
The new genetic data indicate that polar bears went through tough times over the course of their 600,000 year-old evolutionary history. Polar bears show much less genetic diversity than brown bear. This is probably due to dramatic reductions in population size in the past. Maybe those times coincided with phases of climatic warming. Whether polar bears will be able to survive the current phase of sea ice melting is not clear. Firstly, human impacts are accelerating the rate of climate change, and the arctic could reach higher temperatures than in previous interglacial warm phases. In addition, numerous human-related issues are threatening the polar bear today. Polar bears colonizing coastal regions due to sea ice melting frequently encounter human habitat, and many bears are killed. Besides persecution, polar bears are also facing other - evolutionarily novel - threats, including pollution by persistent chemicals in the food chain. “If we were to lose polar bears in our era, we would have to ask ourselves what role we played in pushing them over the edge. They clearly were able to survive previous warm phases”, Hailer concludes upon the wider implications of the study.

The authors of the study are:
Frank Hailer (lead author), Verena E. Kutschera, Björn M. Hallström, Denise Klassert, Axel Janke (senior author) -- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany. Jennifer A. Leonard -- Doñana Biological Station - CSIC, Seville, Spain. Steven R. Fain -- US Fish and Wildlife Service, Forensics lab, Ashland, OR, USA. Ulfur Arnason -- Lund University, Lund, Sweden.

Paper:
Hailer, F. et al. (2012). Nuclear Genomic Sequences Reveal that Polar Bears Are an Old and Distinct Bear Lineage. Science. DOI: 10.1126/science.1216424

For further information please contact:

Frank Hailer, Ph.D. (lead author)
LOEWE Biodiversity and Climate Research Centre (BiK-F)
phone +49 69 798 24733
frank.hailer@senckenberg.de

Prof. Axel Janke
LOEWE Biodiversity and Climate Research Centre (BiK-F) and Goethe University Frankfurt am Main
phone +49 69 7542 1842
axel.janke@senckenberg.de

or

Sabine Wendler
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F), Pressereferentin
phone +49 69 7542 1838
sabine.wendler@senckenberg.de

LOEWE Biodiversität und Klima Forschungszentrum, Frankfurt am Main
With the objective of analysis the complex interactions between biodiversity and climate through a wide range of methods, the Biodiversität und Klima Forschungszentrum [Biodiversity and Climate Research Centre] (BiK‐F) has been funded since 2008 within the context of the Landes‐Offensive zur Entwicklung Wissenschaftlich ökonomischer Exzellenz (LOEWE) of the Land of Hessen. The Senckenberg Gesellschaft für Naturforschung and Goethe University in Frankfurt as well as other, directly involved partners, co‐operate closely with regional, national and international institutions in the fields of science, resource and environmental management, in order to develop projections for the future and scientific recommendations for sustainable action.

Sabine Wendler | Senckenberg
Further information:
http://www.bik-f.de
http://www.senckenberg.de

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>