Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using plants against soils contaminated with arsenic

16.11.2010
Two essential genes that control the accumulation and detoxification of arsenic in plant cells have been identified. This discovery is the fruit of an international collaboration involving laboratories in Switzerland, South Korea and the United States, with the participation of members of the National Centre of Competence in Research (NCCR) Plant Survival.

The results presented are a promising basis for reducing the accumulation of arsenic in crops from regions in Asia that are polluted by this toxic metalloid, as well as for the cleanup of soils contaminated by heavy metals. The findings are published this week in the prestigious journal PNAS.

The sinking of tubewells in Southeast Asia as well as mining in regions such as China, Thailand, and the United States, are the cause that arsenic concentrations in water often exceed the World Health Organization (WHO) limit of 10 μg/L, the value above which health problems start to occur. Tens of millions of people are exposed to this risk by drinking contaminated water or by ingesting cereal crops cultivated in polluted soils.

A long lasting exposure to this highly toxic metalloid could affect the gastrointestinal transit, the kidneys, the liver, the lungs, the skin and increases the risk of cancer. In Bangladesh, it is estimated that 25 million people drink water that contains more than 50 μg/L of arsenic and that two million of them risk of dying from cancer caused by this toxic substance.

Plants offer a way for toxic metals to enter the food chain. We know, for example, that arsenic is stored within rice grains, which, in regions polluted with this toxic metalloid, constitutes a danger for the population whose diet depends to a great extent on this cereal.

Arsenic or cadmium in soils is transported to plant cells and stored in compartments called vacuoles. Within the cell, the translocation of arsenic and its storage in vacuoles is ensured by a category of peptides – the phytochelatins – that bind to the toxic metalloid, and are transported into the vacuole for detoxification, similar to hooking up a trailer to a truck. In terms of the process, it is the “truck and trailer” complex that is stored in the vacuole.

“By identifying the genes responsible for the vacuolar phytochelatin transport and storage, we have found the missing link that the scientific community searched for the past 25 years”, explains Enrico Martinoia, a professor in plant physiology at the University of Zurich. The experiments carried out on the model plant Arabidopsis can easily be adapted to other plants such as rice.

Enrico Martinoia is one of the directors of this research that includes the Korean professor Youngsook Lee from the Pohang University of Science and Technology (POSTECH) and Julian Schroeder, biology professor at the University of California, San Diego (UCSD). Along with Stefan Hörtensteiner, also from the University of Zurich, and Doris Rentsch from the University of Bern, he is one of the three members of the NCCR Plant Survival who participated in this study which was published in PNAS.

Controlling these genes will make it possible to develop plants capable of preventing the transfer of toxic metals and metalloids from the roots to the leaves and grains thereby limiting the entry of arsenic into the food chain. “By focusing on these genes, states Youngsook Lee, we could avoid the accumulation of these heavy metals in edible portions of the plant such as grains or fruits.”

At the same time, researchers have discovered a way to produce plants capable of accumulating a greater amount of toxic metals which consequently can be used to clean up contaminated soils. These plants would then be burned in blast furnaces in order to eliminate the toxic elements.

Literature:
Won-Yong Song, Jiyoung Park, David G. Mendoza-Cózatl, Marianne Suter-Grotemeyer, Donghwan Shim, Stefan Hörtensteiner, Markus Geisler, Barbara Weder, Philip A. Rea, Doris Rentsch, Julian I. Schroeder, Youngsook Lee, Enrico Martinoia: Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters, in: PNAS, Doi: 10.1073/pnas.1013964107
Contact:
Prof. Enrico Martinoia
University of Zurich
Tel. : +41 44 634 8222
enrico.martinoia@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch/

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>