Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In pilot study, a peptide controls blood sugar in people with congenital hyperinsulinism

02.08.2012
Children's Hospital of Philadelphia researchers develop first potential medicine for patients with most severe form of this disease

A pilot study in adolescents and adults has found that an investigational drug shows promise as the first potential medical treatment for children with the severest type of congenital hyperinsulinism, a rare but potentially devastating disease in which gene mutations cause insulin levels to become dangerously high.

"There is currently no effective medicine for children with the most common and most severe form of hyperinsulinism," said study leader Diva D. De Leon, M.D., a pediatric endocrinologist at The Children's Hospital of Philadelphia. "Our new research shows that this investigational drug, a peptide called exendin-(9-39), controls blood sugar levels in people, a very promising result."

The study appeared today online ahead of print in the journal Diabetes.

In congenital hyperinsulinism (HI), mutations disrupt the insulin-secreting beta cells in the pancreas. Uncontrolled, excessive insulin levels thus sharply reduce blood glucose levels, a condition called hypoglycemia. If untreated, hypoglycemia may cause irreversible brain damage or death in children. Congenital HI occurs in an estimated one in 50,000 U.S. children, with a higher incidence among Ashkenazic Jews and certain other groups.

The standard treatment for some forms of congenital HI is diazoxide, a drug that controls insulin secretion by opening potassium channels in beta cells. However, this drug does not work in the most common types of HI, in which mutations prevent these potassium channels from forming.

When abnormal beta cells occur only in a discrete portion of the pancreas, precise surgery on the tiny organ can remove the lesion and cure HI. The Congenital Hyperinsulinism Center at The Children's Hospital of Philadelphia is a world leader in diagnosing such lesions and performing the curative surgery on newborns.

However, in roughly half of congenital HI cases, abnormal cells are diffused through the pancreas, and surgeons must remove nearly the entire pancreas. This leaves the majority of patients at high risk of developing diabetes.

The current study, which builds on previous research by De Leon and colleagues in animals, uses exendin-(9-39), which blocks the action of a hormone receptor, glucagon-like peptide-1 (GLP-1), in beta cells. The GLP-1 receptor is currently the target of drugs that treat diabetes, using the opposite effect from that investigated in this HI study.

The current pilot study included nine subjects, aged 15 to 47 years old, who had hyperinsulinism caused by mutations in potassium channels. None were being treated for HI at the time of the study, but all were at risk of hypoglycemia during periods of fasting.

In all nine subjects, the drug controlled blood glucose levels during fasting. Exendin also controlled insulin secretion in cell studies of beta cells taken from newborns with HI. The current research did not focus on the biological mechanisms that occurred, but De Leon said the results are encouraging enough to progress to a clinical study in children with HI over the next year.

Financial support for this study came from the National Institutes of Health (grant 1R03DK07835), the Lester and Liesel Baker Foundation, and the Clifford and Katherine Goldsmith Foundation. De Leon's co-authors, all from Children's Hospital, were Charles A. Stanley, M.D., Andrew C. Calabria, M.D., Changhong Li, M.D., and Paul R. Gallagher In addition to their positions at Children's Hospital, De Leon, Stanley and Li also are in the Perelman School of Medicine at the University of Pennsylvania.

"The GLP-1 Receptor Antagonist Exendin-(9-39) Elevates Blood Fasting Glucose Levels in Congenital Hyperinsulinism due to Inactivating Mutations in the ATP-sensitive Potassium Channel," Diabetes, published online Aug.1, 2012, to appear in print, October 2012. doi: 10.2337/db12-0166.

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 516-bed hospital recognition as a leading advocate for children and adolescents.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>