Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Did phosphorus trigger complex evolution -- and blue skies?

11.05.2010
The evolution of complex life forms may have gotten a jump start billions of years ago, when geologic events operating over millions of years caused large quantities of phosphorus to wash into the oceans.

According to this model, proposed in a new paper by Dominic Papineau of the Carnegie Institution for Science, the higher levels of phosphorus would have caused vast algal blooms, pumping extra oxygen into the environment which allowed larger, more complex types of organisms to thrive.

"Phosphate rocks formed only sporadically during geologic history," says Papineau, a researcher at Carnegie's Geophysical Laboratory, "and it is striking that their occurrences coincided with major global biogeochemical changes as well as significant leaps in biological evolution."

In his study, published in the journal Astrobiology, Papineau focused on the phosphate deposits that formed during an interval of geologic time known as the Proterozoic, from 2.5 billion years ago to about 540 million years ago. "This time period is very critical in the history of the Earth, because there are several independent lines of evidence that show that oxygen really increased during its beginning and end," says Papineau. The previous atmosphere was possibly methane-rich, which would have given the sky an orangish color. "So this is the time that the sky literally began to become blue."

During the Proterozoic, oxygen levels in the atmosphere rose in two phases: first ranging from 2.5 to 2 billion years ago, called the Great Oxidation Event, when atmospheric oxygen rose from trace amounts to about 10% of the present-day value. Single-celled organisms grew larger during this time and acquired cell structures called mitochondria, the so-called "powerhouses" of cells, which burn oxygen to yield energy. The second phase of oxygen rise occurred between about 1 billion and 540 million years ago and brought oxygen levels to near present levels. This time intervals is marked by the earliest fossils of multi-celled organisms and climaxed with the spectacular increase of fossil diversity known as the "Cambrian Explosion."

Papineau found that these phases of atmospheric change corresponded with abundant phosphate deposits, as well as evidence for continental rifting and extensive glacial deposits. He notes that both rifting and climate changes would have changed patterns of erosion and chemical weathering of the land surface, which would have caused more phosphorous to wash into the oceans. Over geologic timescales the effect on marine life, he says, would have been analogous to that of high-phosphorus fertilizers washed into bodies of water today, such as the Chesapeake Bay, where massive algal blooms have had a widespread impact.

"Today, this is happening very fast and is caused by us," he says, "and the glut of organic matter actually consumes oxygen. But during the Proterozoic this occurred over timescales of hundreds of millions of years and progressively led to an oxygenated atmosphere."

"This increased oxygen no doubt had major consequences for the evolution of complex life. It can be expected that modern changes will also strongly perturb evolution," he adds. "However, new lineages of complex life-forms take millions to tens of millions of years to adapt. In the meantime, we may be facing significant extinctions from the quick changes we are causing."

The research was supported by the Geophysical Laboratory of the Carnegie Institution for Science, Carnegie of Canada, and from the Fonds québécois pour la recherche sur la nature et les technologies (FQRNT), NASA Exobiology and Evolutionary Biology Program, and the NASA Astrobiology Institute through Cooperative Agreement NNA04CC09A.

The Carnegie Institution (www.carnegiescience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Founded in 1998, the NASA Astrobiology Institute (NAI) is a partnership between NASA, 14 U.S. teams, and six international consortia. NAI's goals are to promote, conduct, and lead interdisciplinary astrobiology research, train a new generation of astrobiology researchers, and share the excitement of astrobiology with learners of all ages. http://astrobiology.nasa.gov/nai/

Dominic Papineau | EurekAlert!
Further information:
http://www.ciw.edu
http://astrobiology.nasa.gov/nai/
http://www.carnegiescience.edu

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>