Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phase I clinical trial shows drug shrinks melanoma brain metastases

18.05.2012
3-pronged study reveals high response rate in other advanced melanoma patients and activity in multiple cancers

An experimental drug targeting a common mutation in melanoma successfully shrank tumors that spread to the brain in nine out of 10 patients in part of an international phase I clinical trial report in the May 18 issue of The Lancet.

The drug dabrafenib, which targets the Val600 BRAF mutation that is active in half of melanoma cases, also cut the size of tumors in 25 of 36 patients with late-stage melanoma that had not spread to the brain. The drug also showed activity in other cancer types with the BRAF mutation.

"Nine out of 10 responses among patients with brain metastases is really exciting. No other systemic therapy has ever demonstrated this much activity against melanoma brain metastases," said study co-lead author Gerald Falchook, M.D., assistant professor in the Department of Investigational Cancer Therapeutics at The University of Texas MD Anderson Cancer Center.

Melanoma patients whose disease has spread to their brains have a median overall survival of four or five months, the researchers noted. Drugs used to treat brain metastases have response rates of 10 percent or lower. Surgery and stereotactic or whole-brain radiation also are used.

Tumor shrinkage in the nine responders ranged from 20 percent to 100 percent. In four cases, the brain metastases disappeared.

Drug's reach into brain a surprise

These results will need to be validated in additional clinical trials with larger groups of patients, Falchook said. "This changes how we think of this drug and exclusion criteria for future trials."

"Most clinical trials exclude patients with brain metastases because the drugs are assumed not to cross the blood-brain barrier," Falchook said. "These are the patients most in need of a clinical trial because their treatment options are so limited."

Dabrafenib, made by GlaxoSmithKline, was not designed to cross the blood-brain barrier, which protects the brain from toxic substances in the blood.

The drug's activity against brain metastases was initially a serendipitous finding at one study site. In one patient, a research PET scan performed just before starting dabrafenib revealed a brain metastasis, but this result was not available until after treatment began. The institution's ethics board approved the patient to continue treatment because a follow-up PET scan two weeks later showed decreased metabolic activity in the brain metastasis and subsequent MRIs showed a reduction in its size.

The team then designed a sub-study for 10 patients with untreated brain metastases, Falchook said. The mechanism by which dabrafenib reaches tumors in the brain is under investigation.

"In all of these patients with melanoma brain metastases, the tumors eventually progressed," Falchook said. Prevention of drug resistance remains a challenge in advanced cancers.

High response rate for those without brain metastases

184 patients enrolled at eight sites in the United States and Australia. Of these, 156 patients had melanoma that had spread to other organs. MD Anderson enrolled 64 patients.

The main purpose of a phase I clinical trial is to gradually escalate an experimental drug's dosage to evaluate side effects and establish the highest possible dose that can be safely given.

The researchers never reached a maximum-tolerated dose limit. No patients had to discontinue the drug due to side effects, and few patients experienced severe toxicity. "This is a very non-toxic drug, which is common with these newer, targeted therapies," Falchook said.

Based on response rates and the drug's pharmacokinetics – how the body metabolizes it – the team recommended an oral dose of 150 mg twice daily for future phase II and phase III trials. In the second stage of the phase I trial, they tested that dose in:

36 patients with melanoma with the Val600 BRAF mutation without brain metastases,

10 patients with untreated melanoma brain metastases, and

28 patients with other BRAF-mutant cancers.
Among the 36 melanoma patients without untreated brain metastases:
25 (69 percent) had a partial or complete response, which is shrinkage of at least 30 percent as determined by measuring tumor shrinkage with radiographic imaging,

18 (50 percent) had a confirmed response, meaning the reduction in size was observed in a second imaging scan at least one month later,

17 (47 percent) stayed on the trial for more than six months, and

Responses were seen in the less common Val600Lys BRAF mutation.
The confirmed response rate was similar to that in a phase III study of vemurafenib, the first drug approved for treatment of BRAF-mutant melanoma.

Among those with other types of cancers, patients with papillary thyroid, non-small cell lung and colorectal cancers had partial responses.

"This is further evidence that a tumor's molecular profile is as important, and possibly more important, than the organ where the cancer begins," Falchook said.

"We need to screen for BRAF and other molecular abnormalities in our patients' tumors," he said. "In many other tumor types BRAF mutations occur in small percentages of patients. If we're not testing for it routinely, these patients might never be treated with a promising targeted agent for their cancer."

Falchook has six melanoma patients still receiving dabrafenib, including five who are in complete remission. In addition, Falchook is still treating six papillary thyroid patients and one colorectal cancer patient whose tumors have not progressed on the treatment.

GlaxoSmithKline sponsored and funded the clinical trial. Phase II and phase III trials of dabrafenib for melanoma are under way.

Co-authors with Falchook are Razelle Kurzrock, M.D., of MD Anderson's Department of Investigational Cancer Therapeutics, and Kevin Kim, M.D. of MD Anderson's Department of Melanoma Medical Oncology; co-lead author Georgina Long, M.D., Ph.D., and senior author Richard Kefford, M.D., Ph.D., of Melanoma Institute Australia, Westmead Institute for Cancer Research and Westmead Hospital, University of Sydney, in Sydney, Australia; Tobias Arkenau, M.D., Ph.D., Prince of Wales Hospital, Randwick, Australia; Michael Brown, M.D., Ph.D., Royal Adelaide Hospital and University of Adelaide, Adelaide, Australia; Omid Hamid, M.D., and Steven O'Day, M.D., of The Angeles Clinic and Research Institute. Los Angeles, Calif.; Jeffrey Infante, M.D., Sarah Cannon Research Institute, Nashville, Tenn.; Michael Millward, M.D., Cancer Council of Western Australia, Sir Charles Gairdner Hospital and University of Western Australia, Perth, Australia; Anna Pavlick, M.D., New York University School of Medicine; and Samuel Blackman, M.D., Ph.D., C. Martin Curtis, Peter Lebowitz, M.D., Ph.D., Bo Ma, Ph.D., and Daniele Ouellet, Ph.D., of GlaxoSmithKline Research and Development, Philadelphia.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Studies and Analyses:

nachricht Deep Brain Stimulation Provides Sustained Relief for Severe Depression
19.03.2019 | Universitätsklinikum Freiburg

nachricht AI study of risk factors in type 1 diabetes
06.03.2019 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Laser processing is a matter for the head – LZH at the Hannover Messe 2019

25.03.2019 | Trade Fair News

A Varied Menu

25.03.2019 | Life Sciences

‘Time Machine’ heralds new era

25.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>